Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066802    DOI: 10.1088/1674-1056/ac632e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface electron doping induced double gap opening in Td-WTe2

Qi-Yuan Li(李启远)1,2, Yang-Yang Lv(吕洋洋)1,3, Yong-Jie Xu(徐永杰)1,2, Li Zhu(朱立)1,2, Wei-Min Zhao(赵伟民)1,2, Yanbin Chen(陈延彬)1,2,4, and Shao-Chun Li(李绍春)1,2,4,5,†
1 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2 School of Physics, Nanjing University, Nanjing 210093, China;
3 Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
5 Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
Abstract  By using scanning tunneling microscopy, we investigated the electronic evolution of Td-WTe2 via in-situ surface alkali K atoms deposition. The Td-WTe2 surface is electron doped upon K deposition, and as the K coverage increases, two gaps are sequentially opened near Fermi energy, which probably indicates that two phase transitions concomitantly occur during electron doping. The two gaps both show a dome-like dependence on the K coverage. While the bigger gap shows no prominent dependence on the magnetic field, the smaller one can be well suppressed and thus possibly corresponds to the superconducting transition. This work indicates that Td-WTe2 exhibits rich quantum states closely related to the carrier concentration.
Keywords:  scanning tunneling microscopy      Td-WTe2      surface electron doping      superconductivity transition  
Received:  18 January 2022      Revised:  20 March 2022      Accepted manuscript online:  01 April 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  74.78.-w (Superconducting films and low-dimensional structures)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: We thank Dr. Ping Zhang and Dr. Fawei Zheng for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 11790311, 92165205, 51902152, 11874210, and 11774149) and the National Key R&D Program of China (Grants No. 2021YFA1400403).
Corresponding Authors:  Shao-Chun Li     E-mail:  scli@nju.edu.cn

Cite this article: 

Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春) Surface electron doping induced double gap opening in Td-WTe2 2022 Chin. Phys. B 31 066802

[1] Law K T and Lee P A 2017 Proc. Natl. Acad. Sci. USA 114 6996
[2] Wang L, Wu Y, Yu Y, Chen A, Li H, Ren W, Lu S, Ding S, Yang H, Xue Q K, Li F S and Wang G 2020 ACS Nano 14 8299
[3] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[4] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[5] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[6] Haldane F D 2004 Phys. Rev. Lett. 93 206602
[7] Shuichi M 2007 New J. Phys. 9 356
[8] Liu Y, Shao D F, Li L J, Lu W J, Zhu X D, Tong P, Xiao R C, Ling L S, Xi C Y, Pi L, Tian H F, Yang H X, Li J Q, Song W H, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 045131
[9] Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H and Sun Y P 2016 Appl. Phys. Lett. 108 162601
[10] Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L and Zhao Z 2015 Nat. Commun. 6 7804
[11] Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805
[12] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B and Medvedev S A 2016 Nat. Commun. 7 11038
[13] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[14] Zhang R, Tsai I L, Chapman J, Khestanova E, Waters J and Grigorieva I V 2016 Nano Lett. 16 629
[15] Zhu L, Li Q Y, Lv Y Y, Li S, Zhu X Y, Jia Z Y, Chen Y B, Wen J S and Li S C 2018 Nano Lett. 18 6585
[16] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
[17] Kriener M, Segawa K, Ren Z, Sasaki S, Wada S, Kuwabata S and Ando Y 2011 Phys. Rev. B 84 054513
[18] Liao M, Wang H, Zhu Y, Shang R, Rafique M, Yang L, Zhang H, Zhang D and Xue Q K 2021 Nat. Commun. 12 5342
[19] Wang Z, Li R, Su C and Loh K P 2020 SmartMat 1 e1013
[20] Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270
[21] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
[22] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922
[23] Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C and Gonnelli R S 2018 Nano Lett. 18 4821
[24] Lee J H and Son Y W 2021 Phys. Chem. Chem. Phys. 23 17279
[25] Li Q, He C, Wang Y, Liu E, Wang M, Wang Y, Zeng J, Ma Z, Cao T, Yi C, Wang N, Watanabe K, Taniguchi T, Shao L, Shi Y, Chen X, Liang S J, Wang Q H and Miao F 2018 Nano Lett. 18 7962
[26] Lüpke F, Waters D, De La Barrera S C, Widom M, Mandrus D G, Yan J, Feenstra R M and Hunt B M 2020 Nat. Phys. 16 526
[27] Huang C, Narayan A, Zhang E, Liu Y, Yan X, Wang J, Zhang C, Wang W, Zhou T, Yi C, Liu S, Ling J, Zhang H, Liu R, Sankar R, Chou F, Wang Y, Shi Y, Law K T, Sanvito S, Zhou P, Han Z and Xiu F 2018 ACS Nano 12 7185
[28] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
[29] Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
[30] Wang H, Ma L and Wang J 2018 Sci. Bull. 63 1141
[31] Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F and Shan L 2019 Phys. Rev. B 100 235109
[32] Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 101 134503
[33] Lu P C, Kim J S, Yang J, Gao H, Wu J F, Shao D X, Li B, Zhou D W, Sun J, Akinwande D J, Xing D Y and Lin J F 2016 Phys. Rev. B 94 224512
[34] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[35] Lv H Y, Lu W J, Shao D F, Liu Y, Tan S G and Sun Y P 2015 Europhys. Lett. 110 37004
[36] Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G and Feng D L 2015 Phys. Rev. Lett. 115 166601
[37] Chen Y Q, Chen Y D, Ning J A, Chen L M, Zhuang W Z, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104
[38] Chen Y Q, Liu R X, Chen Y D, Yuan X, Ning J, Zhang C C, Chen L M, Wang P, He L, Zhang R, Xu Y B and Wang X F 2021 Chin. Phys. Lett. 38 017101
[39] Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603
[40] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142
[41] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105
[42] Jia Z Y, Song Y H, Li X B, Ran K J, Lu P C, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J S, Xing D Y and Li S C 2017 Phys. Rev. B 96 041108
[43] Yang W, Mo C J, Fu S B, Yang Y, Zheng F W, Wang X H, Liu Y A, Hao N and Zhang P 2020 Phys. Rev. Lett. 125 237006
[44] Rossi A, Resta G, Lee S H, Redwing R D, Jozwiak C, Bostwick A, Rotenberg E, Savrasov S Y and Vishik I M 2020 Phys. Rev. B 102 121110
[45] Zhang W, Wu Q, Zhang L, Cheong S W, Soluyanov A A and Wu W 2017 Phys. Rev. B 96 165125
[46] Yuan Y, Yang X, Peng L, Wang Z J, Li J, Yi C J, Xian J J, Shi Y G and Fu Y S 2018 Phys. Rev. B 97 165435
[47] Li Q, Yan J, Yang B, Zang Y, Zhang J, He K, Wu M, Zhao Y, Mandrus D, Wang J, Xue Q, Chi L, Singh D J and Pan M 2016 Phys. Rev. B 94 115419
[48] Zhang K W, Yang C L, Lei B, Lu P C, Li X B, Jia Z Y, Song Y H, Sun J, Chen X H, Li J X and Li S C 2018 Sci. Bull. 63 426
[49] Jia Y Y, Wang P J, Chiu C L, Song Z D, Yu G, Jäck B, Lei S M, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X M, Farahi G, Xie F, Xu Y F, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A and Wu S F 2021 Nat. Phys. 18 87
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[7] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[8] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[9] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[10] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[11] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[12] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[13] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[14] Realization of semiconducting Cu2Se by direct selenization of Cu(111)
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(11): 116802.
[15] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
No Suggested Reading articles found!