CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Surface electron doping induced double gap opening in Td-WTe2 |
Qi-Yuan Li(李启远)1,2, Yang-Yang Lv(吕洋洋)1,3, Yong-Jie Xu(徐永杰)1,2, Li Zhu(朱立)1,2, Wei-Min Zhao(赵伟民)1,2, Yanbin Chen(陈延彬)1,2,4, and Shao-Chun Li(李绍春)1,2,4,5,† |
1 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China; 2 School of Physics, Nanjing University, Nanjing 210093, China; 3 Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 5 Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China |
|
|
Abstract By using scanning tunneling microscopy, we investigated the electronic evolution of Td-WTe2 via in-situ surface alkali K atoms deposition. The Td-WTe2 surface is electron doped upon K deposition, and as the K coverage increases, two gaps are sequentially opened near Fermi energy, which probably indicates that two phase transitions concomitantly occur during electron doping. The two gaps both show a dome-like dependence on the K coverage. While the bigger gap shows no prominent dependence on the magnetic field, the smaller one can be well suppressed and thus possibly corresponds to the superconducting transition. This work indicates that Td-WTe2 exhibits rich quantum states closely related to the carrier concentration.
|
Received: 18 January 2022
Revised: 20 March 2022
Accepted manuscript online: 01 April 2022
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: We thank Dr. Ping Zhang and Dr. Fawei Zheng for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 11790311, 92165205, 51902152, 11874210, and 11774149) and the National Key R&D Program of China (Grants No. 2021YFA1400403). |
Corresponding Authors:
Shao-Chun Li
E-mail: scli@nju.edu.cn
|
Cite this article:
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春) Surface electron doping induced double gap opening in Td-WTe2 2022 Chin. Phys. B 31 066802
|
[1] Law K T and Lee P A 2017 Proc. Natl. Acad. Sci. USA 114 6996 [2] Wang L, Wu Y, Yu Y, Chen A, Li H, Ren W, Lu S, Ding S, Yang H, Xue Q K, Li F S and Wang G 2020 ACS Nano 14 8299 [3] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 [4] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [5] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [6] Haldane F D 2004 Phys. Rev. Lett. 93 206602 [7] Shuichi M 2007 New J. Phys. 9 356 [8] Liu Y, Shao D F, Li L J, Lu W J, Zhu X D, Tong P, Xiao R C, Ling L S, Xi C Y, Pi L, Tian H F, Yang H X, Li J Q, Song W H, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 045131 [9] Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H and Sun Y P 2016 Appl. Phys. Lett. 108 162601 [10] Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L and Zhao Z 2015 Nat. Commun. 6 7804 [11] Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805 [12] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B and Medvedev S A 2016 Nat. Commun. 7 11038 [13] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960 [14] Zhang R, Tsai I L, Chapman J, Khestanova E, Waters J and Grigorieva I V 2016 Nano Lett. 16 629 [15] Zhu L, Li Q Y, Lv Y Y, Li S, Zhu X Y, Jia Z Y, Chen Y B, Wen J S and Li S C 2018 Nano Lett. 18 6585 [16] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 [17] Kriener M, Segawa K, Ren Z, Sasaki S, Wada S, Kuwabata S and Ando Y 2011 Phys. Rev. B 84 054513 [18] Liao M, Wang H, Zhu Y, Shang R, Rafique M, Yang L, Zhang H, Zhang D and Xue Q K 2021 Nat. Commun. 12 5342 [19] Wang Z, Li R, Su C and Loh K P 2020 SmartMat 1 e1013 [20] Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270 [21] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926 [22] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922 [23] Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C and Gonnelli R S 2018 Nano Lett. 18 4821 [24] Lee J H and Son Y W 2021 Phys. Chem. Chem. Phys. 23 17279 [25] Li Q, He C, Wang Y, Liu E, Wang M, Wang Y, Zeng J, Ma Z, Cao T, Yi C, Wang N, Watanabe K, Taniguchi T, Shao L, Shi Y, Chen X, Liang S J, Wang Q H and Miao F 2018 Nano Lett. 18 7962 [26] Lüpke F, Waters D, De La Barrera S C, Widom M, Mandrus D G, Yan J, Feenstra R M and Hunt B M 2020 Nat. Phys. 16 526 [27] Huang C, Narayan A, Zhang E, Liu Y, Yan X, Wang J, Zhang C, Wang W, Zhou T, Yi C, Liu S, Ling J, Zhang H, Liu R, Sankar R, Chou F, Wang Y, Shi Y, Law K T, Sanvito S, Zhou P, Han Z and Xiu F 2018 ACS Nano 12 7185 [28] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38 [29] Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32 [30] Wang H, Ma L and Wang J 2018 Sci. Bull. 63 1141 [31] Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F and Shan L 2019 Phys. Rev. B 100 235109 [32] Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 101 134503 [33] Lu P C, Kim J S, Yang J, Gao H, Wu J F, Shao D X, Li B, Zhou D W, Sun J, Akinwande D J, Xing D Y and Lin J F 2016 Phys. Rev. B 94 224512 [34] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [35] Lv H Y, Lu W J, Shao D F, Liu Y, Tan S G and Sun Y P 2015 Europhys. Lett. 110 37004 [36] Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G and Feng D L 2015 Phys. Rev. Lett. 115 166601 [37] Chen Y Q, Chen Y D, Ning J A, Chen L M, Zhuang W Z, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104 [38] Chen Y Q, Liu R X, Chen Y D, Yuan X, Ning J, Zhang C C, Chen L M, Wang P, He L, Zhang R, Xu Y B and Wang X F 2021 Chin. Phys. Lett. 38 017101 [39] Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603 [40] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 [41] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 [42] Jia Z Y, Song Y H, Li X B, Ran K J, Lu P C, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J S, Xing D Y and Li S C 2017 Phys. Rev. B 96 041108 [43] Yang W, Mo C J, Fu S B, Yang Y, Zheng F W, Wang X H, Liu Y A, Hao N and Zhang P 2020 Phys. Rev. Lett. 125 237006 [44] Rossi A, Resta G, Lee S H, Redwing R D, Jozwiak C, Bostwick A, Rotenberg E, Savrasov S Y and Vishik I M 2020 Phys. Rev. B 102 121110 [45] Zhang W, Wu Q, Zhang L, Cheong S W, Soluyanov A A and Wu W 2017 Phys. Rev. B 96 165125 [46] Yuan Y, Yang X, Peng L, Wang Z J, Li J, Yi C J, Xian J J, Shi Y G and Fu Y S 2018 Phys. Rev. B 97 165435 [47] Li Q, Yan J, Yang B, Zang Y, Zhang J, He K, Wu M, Zhao Y, Mandrus D, Wang J, Xue Q, Chi L, Singh D J and Pan M 2016 Phys. Rev. B 94 115419 [48] Zhang K W, Yang C L, Lei B, Lu P C, Li X B, Jia Z Y, Song Y H, Sun J, Chen X H, Li J X and Li S C 2018 Sci. Bull. 63 426 [49] Jia Y Y, Wang P J, Chiu C L, Song Z D, Yu G, Jäck B, Lei S M, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X M, Farahi G, Xie F, Xu Y F, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A and Wu S F 2021 Nat. Phys. 18 87 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|