CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures |
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒)†, Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤)‡ |
School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China |
|
|
Abstract Van der Waals (VDW) heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics, optoelectronic, and heterocatalysis. In this work, the influences of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX2 (M = Mo, W, and X=S, Se) are studied using density functional theory calculations. The results reveal that the band alignment of hBN/MX2 can be adjusted by introducing vacancies and atomic doping. The type-I band alignment of the host structure is maintained in the heterostructure with n-type doping in the hBN sublayer. Interestingly, the band alignment changed into the type-II heterostructrue due to VB defect and p-type doping is introduced into the hBN sublayer. This can conduce to the separation of photo-generated electron-hole pairs at the interfaces, which is highly desired for heterostructure photocatalysis. In addition, two Z-type heterostructures including hBN(BeB)/MoS2, hBN(BeB)/MoSe2, and hBN(VN)/MoSe2 are achieved, showing the decreasing of band gap and ideal redox potential for water splitting. Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX2 heterostructures via interfacial defects.
|
Received: 18 October 2021
Revised: 08 December 2021
Accepted manuscript online: 16 December 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3802400), the National Natural Science Foundation of China (Grant Nos. 52161037, U20A20237, 51871065, and 51971068), the Scientific Research and Technology Development Program of Guangxi Zhuang Autonmous Region Province, China (Grant Nos. AD19110037, AA19182014, AD17195073, and AA17202030-1), the Guangxi Natural Science Foundation, China (Grant Nos. 2017JJB150085 and 2019GXNSFGA245005), the Innovation Project of GUET Graduate Education, China (Grant No. 2022YCXS197), the Guangxi Bagui Scholar Foundation, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands, ChinesischDeutsche Kooperationsgruppe, China (Grant No. GZ1528), and the Guangxi Key Laboratory of Information Material, China (Grant No. 201025-Z). |
Corresponding Authors:
Peng-Ru Huang, Li-Xian Sun
E-mail: pengruhuang@guet.edu.cn;sunlx@guet.edu.cn
|
Cite this article:
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤) Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures 2022 Chin. Phys. B 31 067101
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S C, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Zhang L, Yang Z, Gong T, Pan R, Wang H, Guo Z, Zhang H and Fu X 2020 J. Mate. Chem. A 8 8813 [3] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [4] Knobloch T, Illarionov Y Y, Ducry F, Schleich C, Wachter S, Watanabe K, Taniguchi T, Mueller T, Waltl M and Lanza M 2021 Nat. Electron. 4 98 [5] Chen H, Xue X, Liu C, Fang J, Wang Z, Wang J, Zhang D W, Hu W and Zhou P 2021 Nat. Electron. 4 399 [6] Reserbat-Plantey A, Epstein I, Torre I, Costa A T, Gonçalves P, Mortensen N A, Polini M, Song J C, Peres N M and Koppens F H 2021 Acs Photonics 8 85 [7] Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H and Juang Z 2010 Nano Lett. 10 4134 [8] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F and Zhang H 2011 Angew. Chem. 123 11289 [9] Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F and Salehi-Khojin A 2015 Adv. Mater. 27 1887 [10] Wang Q and O'hare D 2012 Chem. Rev. 112 4124 [11] Wang G, Pandey R and Karna S P 2015 Acs Appl. Mater. Interfaces 7 11490 [12] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 [13] Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 [14] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320 [15] Wu D, Guo J, Wang C, Ren X, Chen Y, Lin P, Zeng L, Shi Z, Li X J and Shan C X 2021 Acs Nano 15 10119 [16] Qi F, Yang Z, Zhang J, Wang Y, Qiu Q and Li H 2020 ACS Appl. Mater. Interfaces 12 55417 [17] Deng Z, Wang X and Cui J 2019 RSC Adv. 9 13418 [18] Sun M, Chou J P, Yu J and Tang W 2017 J. Phys. Chem. C 5 10383 [19] Fang Q, Huang Y, Miao Y, Xu K, Li Y and Ma F 2017 J. Phys. Chem. C 121 6605 [20] Zhao Y, Lin Y, Wang G, Jiang Z, Zhang R and Zhu C 2019 Appl. Surf. Sci. 463 809 [21] Xu L, Zeng J, Li Q, Xia L, Luo X, Ma Z, Peng B, Xiong S, Li Z and Wang L L 2021 Appl. Surf. Sci. 547 149207 [22] Kresse G and Kurthmuler J 1996 Comput. Mater. Sci. 6 15 [23] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] Grimme S and Semiempirical 2006 J. Comput. Chem. 27 1787 [27] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [28] Van de Walle C G and Neugebauer 2004 J. Appl. Phys. 95 3851 [29] Huang B and Lee H 2012 Phys. Rev. B 86 245406 [30] Biase X, Rubio A and Louie S 1994 Europhys. Phys. Lett. 28 335 [31] Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H and Juang Z Y 2010 Nano Lett. 10 4134 [32] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J and Yakobson B I 2010 Nano Lett. 10 3209 [33] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111 [34] Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 Physica B 406 2254 [35] Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402 [36] Singh N, Jabbour G and Schwingenschlögl U 2012 Eur. Phys. J. B. 85 1 [37] Albe K and Klein A 2022 Phys. Rev. B 66 073413 [38] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576 [39] Cheng Q, Pang J, Sun D, Wang J, Zhang S, Liu F, Chen Y, Yang R, Liang N and Lu X 2020 InfoMat 2 656 [40] Zhao G, Wang J, Xu Y, Ma Z, Li X, Yang W, Liu G and Yang J 2020 J. Alloy. Compd. 834 155108 [41] Zhao G, Xu Y, Wang J, Li X, Yang W, Liu G and Yang J 2021 J. Alloy. Compd. 854 157301 [42] Koda D S, Bechstedt F, Marques M and Teles L K 2017 J. Electron Mater. 46 3910 [43] Gerber I C and Marie X 2018 arXiv:1810.02130 [44] Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505 [45] Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J and Kaiser U 2009 Nano Lett. 9 2683 [46] Zhang J, Deng P, Deng M, Shen H, Feng Z and Li H 2020 ACS Omega 5 29081 [47] Sun Z H, Huang Q, Zhang Y, Huang P R, Zhi H Y, Zou Y J, Xu F and Sun L X. 2021 Acta Phys. Sin. 70 033102 (in Chinese) [48] Wang J, Huang Y, Zhu G, Zhang J, Wei X and Ma F 2021 J. Alloys Compd. 859 157873 [49] Zhang X, Wang D, Man X, Wu J, Liu Q, Qi Y, Liu Z, Zhao X, Wu J and Hao C 2020 J. Colloid Interface Sci. 558 123 [50] Zhao D, Wang Y, Dong C L, Huang Y C, Chen J, Xue F, Shen S and Guo L 2021 Nat. Energy 6 388 [51] Xing C, Liu Y, Zhang Y, Wang X, Guardia P, Yao L, Han X, Zhang T, Arbiol J and Soler L 2021 ACS Appl. Mater. Interfaces 13 449 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|