|
|
NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface |
Huan Yang(杨欢)1, Yun Cao(曹云)1, Yixuan Gao(高艺璇)1, Yubin Fu(付钰彬)2, Li Huang(黄立)1,†, Junzhi Liu(刘俊治)2,3, Xinliang Feng(冯新亮)2,‡, Shixuan Du(杜世萱)1,4,§, and Hong-Jun Gao(高鸿钧)1,4 |
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China; 2 Center for Advancing Electronics Dresden(cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; 3 Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China; 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Nanographenes (NGs) can be embedded with predesigned dopants or nonhexagonal rings to tailor the electronic properties and provide ideal platforms to study the unique physical and chemical properties. Here, we report the on-surface synthesis of NBN-doped NG embedded with five- and seven-membered rings (NBN-575-NG) on Au(111) from a oligophenylene precursor preinstalled with a NBN unit and a heptagonal ring. Scanning tunneling microscopy and non-contact atomic force microscopy images elucidate the intramolecular cyclodehydrogenation and the existence of the five- and seven-membered rings. Scanning tunneling spectroscopy spectra reveal that the NBN-575-NG is a semiconductor, which agrees with the density functional theory calculation results on a freestanding NBN-575-NG with the same structure. This work provides a feasible approach for the on-surface synthesis of novel NGs containing non-hexagonal rings.
|
Received: 01 March 2021
Revised: 13 March 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
31.15.E-
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761135130 and 61888102), the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), DFG EnhanceNano (Grant No. 391979941), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant NO. 112111KYSB20160061), and the K. C. Wong Education Foundation. Part of the research was performed in the Key Laboratory of Vacuum Physics, Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China. |
Corresponding Authors:
Li Huang, Xinliang Feng, Shixuan Du
E-mail: lhuang@iphy.ac.cn;xinliang.feng@tu-dresden.de;sxdu@iphy.ac.cn
|
Cite this article:
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface 2021 Chin. Phys. B 30 056802
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl Acad. Sci. USA 102 10451 [3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [4] Duan R H, Deng Y, Yang J F and Liu Z 2021 Chin. J. Vaccu. Sci. Tec. 41 1 [5] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151 [6] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801 [7] Guo H, Chen H, Que Y, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107 [8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [9] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Phys. 12 139 [10] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X and Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese) [11] Zhang T T, Cheng M, Yang R and Zhang G Y 2017 Acta Phys. Sin. 66 216103 [12] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W and Zhang G 2020 Chin. Phys. B 29 128104 [13] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese) [14] Kastler M, Schmidt J, Pisula W, Sebastiani D and Müllen K 2006 J. Am. Chem. Soc. 128 9526 [15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [16] Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D and Fasel R 2011 Nat. Chem. 3 61 [17] Chen L, Hernandez Y, Feng X and Mullen K 2012 Angew. Chem. Int. Ed. 51 7640 [18] Lv R and Terrones M 2012 Mater. Lett. 78 209 [19] Wang X Y, Narita A, Zhang W, Feng X and Mullen K 2016 J. Am. Chem. Soc. 138 9021 [20] Mishra S, Beyer D, Berger R, Liu J, Groning O, Urgel J I, Mullen K, Ruffieux P, Feng X and Fasel R 2020 J. Am. Chem. Soc. 142 1147 [21] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S and Jia J 2020 Phys. Rev. Lett. 124 147206 [22] Li J, Sanz S, Corso M, Choi D J, Pena D, Frederiksen T and Pascual J I 2019 Nat. Commun. 10 200 [23] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896 [24] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K and Gao H J 2014 Appl. Phys. Lett. 105 023101 [25] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Nat. Commun. 6 8098 [26] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J and Liljeroth P 2015 Nat. Commun. 6 10177 [27] Liu J, Li B W, Tan Y Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X and Mullen K 2015 J. Am. Chem. Soc. 137 6097 [28] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26 [29] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 [30] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924 [31] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470 [32] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489 [33] Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H Z, Jung H S, Lin S, Crommie M F and Fischer F R 2015 Angew. Chem., Int. Ed. 54 15143 [34] Xu K, Urgel J I, Eimre K, Di Giovannantonio M, Keerthi A, Komber H, Wang S, Narita A, Berger R, Ruffieux P, Pignedoli C A, Liu J, Mullen K, Fasel R and Feng X 2019 J. Am. Chem. Soc. 141 7726 [35] Fu Y, Yang H, Gao Y, Huang L, Berger R, Liu J, Lu H, Cheng Z, Du S, Gao H J and Feng X 2020 Angew. Chem., Int. Ed. 59 8873 [36] Pavlicek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotechnol. 12 308 [37] Su J, Telychko M, Hu P, Macam G, Mutombo P, Zhang H, Bao Y, Cheng F, Huang Z Q, Qiu Z, Tan S J R, Lin H, Jelínek P, Chuang F C, Wu J and Lu J 2019 Sci. Adv. 5 eaav7717 [38] Wang X Y, Richter M, He Y, Bjork J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand J J, Narita A, Berger R, Feng X, Auwarter W, Barth J V, Palma C A and Mullen K 2017 Nat. Commun. 8 1948 [39] Fu Y, Zhang K, Dmitrieva E, Liu F, Ma J, Weigand J J, Popov A A, Berger R, Pisula W, Liu J and Feng X 2019 Org. Lett. 21 1354 [40] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213 [41] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [44] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|