ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials |
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉)†, Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林) |
Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract A hybrid metamaterial with the integration of molybdenum disulfide (MoS2) overlayer is proposed to manipulate the terahertz (THz) wave. The simulated results indicate that the introduction of MoS2 layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect, especially for the structure on the small permitivity substrate. Additionally, the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS2 layer. Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results, explicating the response behaviors originate from the coupling between MoS2 overlayer and the metastructure. Our results could provide a possibility for active control THz modulator and switchable device based on the MoS2 overlayer and advance the understanding of the coupling mechanism in hybrid structures.
|
Received: 14 July 2021
Revised: 16 August 2021
Accepted manuscript online: 22 August 2021
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.15.Eq
|
(Optical system design)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
Fund: Project supported by Beijing Natural Science Foundation of China (Grant No. 4181001) and the National Natural Science Foundation of China (Grant Nos. 62075142 and 61875140). |
Corresponding Authors:
Qingli Zhou
E-mail: qlzhou@cnu.edu.cn
|
Cite this article:
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林) Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials 2022 Chin. Phys. B 31 014101
|
[1] Ganatra R and Zhang Q 2014 ACS Nano 8 4074 [2] Dankert A and Dash S P 2017 Nat. Commun. 8 16093 [3] Rukelj Z, Strkalj A and Despoja V 2016 Phys. Rev. B 94 115428 [4] Huang Y L, Chen Y, Zhang W, Quek S Y, Chen C H, Li L J, Hsu W T, Chang W H, Zheng Y J, Chen W and Wee A T 2015 Nat. Commun. 6 6298 [5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2010 Nat. Nanotechnol. 6 147 [7] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102 [8] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497 [9] Srivastava Y K, Chaturvedi A, Manjappa M, Kumar A, Dayal G, Kloc C and Singh R 2017 Adv. Opt. Mater. 5 1700762 [10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [11] Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 [12] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944 [13] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, KC S, Dubey M, Cho K, Wallace R M, Lee S C, He J H, Ager J W, Zhang X, Yablonovitch E and Javey A 2015 Science 350 1065 [14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [15] Geim A K and Grigorieva I V 2103 Nature 499 419 [16] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai H, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R and Javey A 2014 Proc. Natl. Acad. Sci. USA 111 6198 [17] Arnold A J, Razavieh A, Nasr J R, Schulman D S, Eichfeld C M and Das S 2017 ACS Nano 11 3110 [18] Veselago V G 1968 Sov. Phys. Usp. 10 509 [19] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184 [20] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534 [21] Shalaev V M 2007 Nat. Photon. 1 41 [22] Pendry J B, Holden A, Robbins D and Stewart W 1999 IEEE Trans. Microwave Theory Tech. 47 2075 [23] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 [24] Soukoulis C M, Kafesaki M and Economou E N 2006 Adv. Mater. 18 1941 [25] Soukoulis C M, Linden S and Wegener M 2007 Science 315 47 [26] Deng Y W, Zhou Q L, Zhang P J, Jiang N, Ning T, Liang W L and Zhang C L 2021 ACS Appl. Mater. Interfaces 13 13565 [27] Ji J, Zhou S, Wang W, Ling F and Yao J 2019 Nanoscale 11 9429 [28] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401 [29] Li C, Zhou Q L, Shi Y L, Yang Z, Shi L and Zhang C L 2017 Opt. Commun. 391 77 [30] Kim T T, Kim H D, Zhao R, Oh S S, Ha T, Chung D S, Lee Y H, Min B and Zhang S 2018 ACS Photonics 5 1800 [31] Hu Y, You J, Tong M, Zheng X, Xu Z, Cheng X and Jiang T 2020 Adv. Sci. 7 2000799 [32] Hu Y, Jiang T, Sun H, Tong M, You J, Zheng X, Xu Z and Cheng X 2020 Laser Photon. Rev. 14 1900338 [33] Zhou J, Zhang C, Liu Q, You J, Zheng X, Cheng X and Jiang T 2020 Nanophotonics 9 2797 [34] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202 [35] Li J, Zhou Y, Quan B, Pan X, Xu X, Ren Z, Hu F, Fan H, Qi M, Bai J, Wang L, Li J and Gu C 2014 Carbon 78 102 [36] Su X, Ouyang C, Xu N, Tan S, Gu J, Tian Z, Singh R, Zhang S, Yan F, Han J and Zhang W 2015 Sci. Rep. 5 10823 [37] Alloway D M, Hofmann M, Smith D L, Gruhn N E, Graham A L, Colorado R, Wysocki V H, Lee T R, Lee P A and Armstrong N R 2003 J. Phys. Chem. B 107 11690 [38] Sun Y, Xia X, Feng H, Yang H, Gu C and Wang L 2008 Appl. Phys. Lett. 92 221101 [39] Wang Q, Huang Y, Yao Z and Xu X 2016 Opt. Quantum Electron. 48 83 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|