Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014101    DOI: 10.1088/1674-1056/ac1fde
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials

Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林)
Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  A hybrid metamaterial with the integration of molybdenum disulfide (MoS2) overlayer is proposed to manipulate the terahertz (THz) wave. The simulated results indicate that the introduction of MoS2 layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect, especially for the structure on the small permitivity substrate. Additionally, the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS2 layer. Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results, explicating the response behaviors originate from the coupling between MoS2 overlayer and the metastructure. Our results could provide a possibility for active control THz modulator and switchable device based on the MoS2 overlayer and advance the understanding of the coupling mechanism in hybrid structures.
Keywords:  terahertz metamaterial      MoS2      coupling mechanism      switchable device  
Received:  14 July 2021      Revised:  16 August 2021      Accepted manuscript online:  22 August 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.15.Eq (Optical system design)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
Fund: Project supported by Beijing Natural Science Foundation of China (Grant No. 4181001) and the National Natural Science Foundation of China (Grant Nos. 62075142 and 61875140).
Corresponding Authors:  Qingli Zhou     E-mail:  qlzhou@cnu.edu.cn

Cite this article: 

Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林) Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials 2022 Chin. Phys. B 31 014101

[1] Ganatra R and Zhang Q 2014 ACS Nano 8 4074
[2] Dankert A and Dash S P 2017 Nat. Commun. 8 16093
[3] Rukelj Z, Strkalj A and Despoja V 2016 Phys. Rev. B 94 115428
[4] Huang Y L, Chen Y, Zhang W, Quek S Y, Chen C H, Li L J, Hsu W T, Chang W H, Zheng Y J, Chen W and Wee A T 2015 Nat. Commun. 6 6298
[5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2010 Nat. Nanotechnol. 6 147
[7] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[8] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[9] Srivastava Y K, Chaturvedi A, Manjappa M, Kumar A, Dayal G, Kloc C and Singh R 2017 Adv. Opt. Mater. 5 1700762
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[11] Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[12] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[13] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, KC S, Dubey M, Cho K, Wallace R M, Lee S C, He J H, Ager J W, Zhang X, Yablonovitch E and Javey A 2015 Science 350 1065
[14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[15] Geim A K and Grigorieva I V 2103 Nature 499 419
[16] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai H, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R and Javey A 2014 Proc. Natl. Acad. Sci. USA 111 6198
[17] Arnold A J, Razavieh A, Nasr J R, Schulman D S, Eichfeld C M and Das S 2017 ACS Nano 11 3110
[18] Veselago V G 1968 Sov. Phys. Usp. 10 509
[19] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[20] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[21] Shalaev V M 2007 Nat. Photon. 1 41
[22] Pendry J B, Holden A, Robbins D and Stewart W 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[23] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[24] Soukoulis C M, Kafesaki M and Economou E N 2006 Adv. Mater. 18 1941
[25] Soukoulis C M, Linden S and Wegener M 2007 Science 315 47
[26] Deng Y W, Zhou Q L, Zhang P J, Jiang N, Ning T, Liang W L and Zhang C L 2021 ACS Appl. Mater. Interfaces 13 13565
[27] Ji J, Zhou S, Wang W, Ling F and Yao J 2019 Nanoscale 11 9429
[28] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[29] Li C, Zhou Q L, Shi Y L, Yang Z, Shi L and Zhang C L 2017 Opt. Commun. 391 77
[30] Kim T T, Kim H D, Zhao R, Oh S S, Ha T, Chung D S, Lee Y H, Min B and Zhang S 2018 ACS Photonics 5 1800
[31] Hu Y, You J, Tong M, Zheng X, Xu Z, Cheng X and Jiang T 2020 Adv. Sci. 7 2000799
[32] Hu Y, Jiang T, Sun H, Tong M, You J, Zheng X, Xu Z and Cheng X 2020 Laser Photon. Rev. 14 1900338
[33] Zhou J, Zhang C, Liu Q, You J, Zheng X, Cheng X and Jiang T 2020 Nanophotonics 9 2797
[34] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[35] Li J, Zhou Y, Quan B, Pan X, Xu X, Ren Z, Hu F, Fan H, Qi M, Bai J, Wang L, Li J and Gu C 2014 Carbon 78 102
[36] Su X, Ouyang C, Xu N, Tan S, Gu J, Tian Z, Singh R, Zhang S, Yan F, Han J and Zhang W 2015 Sci. Rep. 5 10823
[37] Alloway D M, Hofmann M, Smith D L, Gruhn N E, Graham A L, Colorado R, Wysocki V H, Lee T R, Lee P A and Armstrong N R 2003 J. Phys. Chem. B 107 11690
[38] Sun Y, Xia X, Feng H, Yang H, Gu C and Wang L 2008 Appl. Phys. Lett. 92 221101
[39] Wang Q, Huang Y, Yao Z and Xu X 2016 Opt. Quantum Electron. 48 83
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[14] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[15] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
No Suggested Reading articles found!