Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014102    DOI: 10.1088/1674-1056/ac22a2

High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons

Xue-Wei Zhang(张雪伟)1, Shao-Bin Liu(刘少斌)1,†, Ling-Ling Wang(王玲玲)1, Qi-Ming Yu (余奇明)1, Jian-Lou(娄健)1, and Shi-Ning Sun(孙世宁)2
1 College of Electronic and Information Engineering, Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 AVIC Research Institute for Special Structures of Aeronautical Composite, Aviation Key Laboratory of Science and Technology on High Performance Electromagnetic Windows, Jinan 250023, China
Abstract  A novel bandpass filter (BPF) based on spoof surface plasmon polaritons (SSPPs) using a compact folded slotline structure is proposed and experimentally demonstrated. The proposed novel SSPPs structure compared with a conventional plasmonic waveguide with slot line SSPPs unit structure at the same size, the considerable advantages in much lower asymptotic frequency with tight field confinement, which enable the proposed filter to be more miniaturization. A high-efficient mode conversion structure is designed to transition from TE-mode to SSPPs-mode by gradient slotline lengths. The low-frequency stop-band can be committed with microstrip to slotline evolution on both sides of the dielectric, while the high-frequency cutoff band is realized by the proposed SSPPs structure. The influence of dispersion relation, electric field distribution, surface current, and structural parameters on the transmission characteristics of the proposed BPF are analyzed by finite difference time domain (FDTD). To validate the design concept, the prototype of the miniaturized SSPPs BPF has been manufactured and measured. The experimental results show high performance of the fabricated sample, in which the working in a range of 0.9 GHz-5.2 GHz with the relative bandwidth is 142%, the insertion loss less than 0.5 dB, the reflection coefficient less than -10 dB, and the group delay is less than one ns. This works provides a mirror for realizing the miniaturization of waveguides, and the application and development of high-confinement SSPPs functional devices in the microwave and THz regimes.
Keywords:  spoof surface plasmon polaritons (SSPPs)      bandpass filter      ultra-wideband      high-confinement  
Received:  27 July 2021      Revised:  25 August 2021      Accepted manuscript online:  01 September 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Dc (Microwave circuits)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071221 and 62071442), the Equipment Advance Research Foundation of China (Grant No. 80909010302), and the Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education of China (Grant No. NJ20210006).
Corresponding Authors:  Shao-Bin Liu     E-mail:,

Cite this article: 

Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁) High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons 2022 Chin. Phys. B 31 014102

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Jiang L Y, Yi Y T, Yi Z, Yang H, Li Z Y, Su J, Zhou Z G, Chen X F and Yi Y G 2021 Acta Phys. Sin. 70 128101 (in Chinese)
[4] Li Z Y, Yi Y T, Xu D Y, Yang H, Yi Z, Chen X F, Yi Y G, Zhang J G and Wu P H 2021 Chin. Phys. B 30 098102
[5] Sun C, Rong K, Wang Y, Li H, Gong Q and Che J 2016 Nanotechnology 27 065501
[6] Qi Y P, Wang L Y, Zhang Yu, Zhang Ting, Zhang B H, Deng X Y and Wang X X 2020 Chin. Phys. B 29 067303
[7] Wang X X, Zhu J K, Tong H, Yang X D, Wu X X, Pang Z Y, Yan H and Qi Y P 2019 Chin. Phys. B 28 044201
[8] Hibbins A P, Lockyear M J, Hooper I R and Sambles J R 2006 Phys. Rev. Lett. 96 073904
[9] Jiang T, Shen L, Wu J J, Yang T J, Ruan Z and Ran L 2011 Appl. Phys. Lett. 99 261103
[10] Pendry J B, Martín-Moreno L and Garcia-Vidal F J 2004 Science 305 847
[11] Garcia-Vidal F J, Martín-Moreno L and Pendry J B 2005 J. Opt. A-Pure Appl. Opt. 7 S97
[12] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[13] Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L and García-Vidal F J 2008 Nat. Photon. 2 175
[14] Fernández-Domínguez A I, Williams C R, García-Vidal F J, Martín-Moreno L, Andrews S R and Maier S A 2008 Appl. Phys. Lett. 93 141109
[15] Gao Z, Zhang X and Shen L 2010 J. Appl. Phys. 108 113104
[16] Wood J J, Tomlinson L A, Hess O, Maier S A and Fernández-Domínguez A I 2012 Phys. Rev. B 85 075441
[17] Shen X, Cui T J, Martin-Cano D F and Garcia-Vidal J 2013 Proc. Nat. Acad. Sci. USA 110 40
[18] Liu X, Zhu L and Feng Y 2016 Chin. Phys. B 25 034101
[19] Ma H F, Shen X P, Cheng Q, Jiang W X and Cui T J 2014 Laser Photon. Rev. 8 146
[20] Wang M, Ma H F, Tang W X, Zhang H C, Wang Z X and Cui T J 2019 Adv. Mater. Technol. 4 1800603
[21] Tian L L, Chen Y, Liu J L, Guo K, Zhou K Y, Gao Y and Liu S T 2016 Chin. Phys. B 25 078401
[22] Xu J J, Yin J Y, Zhang H C and Cui T J 2016 Sci. Rep. 6 22692
[23] Han J F, Zhen S, Wang W H, Han K, Li H P, Zhao L and Shen X P 2021 Chin. Phys. B 30 034102
[24] Zhang H C, Liu S, Shen X P and Chen L H 2015 Laser Photon. Rev. 9 83
[25] Zhang D, Zhang K, Wu Q, Dai R and Sha X 2018 Opt. Lett. 43 3176
[26] Wang J, Zhao L, Zhang C H, Shen X P and Cui T J 2019 Opt. Lett. 44 3374
[27] Feng W J, Feng Y H, Shi Y R, Shi S Y and Che W Q 2020 IEEE Trans. Plasma Sci. 48 2083
[28] Chen Z M, Liu Y H, Liang X H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L and Cui T J 2019 IEEE Access 8 4311
[29] Chen H Y, Han Y J, Ma H, Wang J F and Yan M G 2020 IEEE Access 8 103635
[30] Zhong T and Zhang H 2020 Chin. Phys. B 29 094101
[31] Feng W J, Feng Y H, Yang W C, Che W Q and Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832
[32] Lei Z, Xin Z, Wang J, Yu W and Shen X 2016 Sci. Rep. 6 36069
[33] Ying J G, Kai D X and Tang X 2018 Opt. Express 26 10589
[34] Guan D F, You P, Zhang Q F, Yang Z B, Liu H W and Yong S W 2018 IEEE Trans. Microw. Theory Techn. 66 2946
[35] Guan D F, You P, Zhang Q F, Xiao K and Yong S W 2017 IEEE Trans. Microw. Theory Techn. 65 4925
[36] Zhou Y J and Yang B J 2015 Appl. Opt. 54 4529
[37] Yong J Z and Qian X X 2017 J. Appl. Phys. 121 123109
[38] Liu H, Wang Z, Zhang Q, Ma H, Ren B and Wen P 2019 IEEE Access 7 44212
[1] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[2] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[3] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[4] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[5] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[6] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[7] Compact high-order quint-band superconducting band-pass filter
Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068503.
[8] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[9] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[10] Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter
Hai-Peng Li(李海鹏), Wen-Yue Fu(付文悦), Xiao-Peng Shen(沈晓鹏), Kui Han(韩奎), Wei-Hua Wang(王伟华). Chin. Phys. B, 2017, 26(12): 127801.
[11] High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size
Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(10): 108502.
[12] Ultra-wideband reflective polarization converter based on anisotropic metasurface
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇). Chin. Phys. B, 2016, 25(8): 088101.
[13] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[14] Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Xi Gao(高喜), Xing-Yang Yu(余行阳), Wei-Ping Cao(曹卫平), Yan-Nan Jiang(姜彦南), Xin-Hua Yu(于新华). Chin. Phys. B, 2016, 25(12): 128102.
[15] An ultra-wideband pattern reconfigurable antenna based on graphene coating
YanNan Jiang(姜彦南), Rui Yuan(袁锐), Xi Gao(高喜), Jiao Wang(王娇), SiMin Li(李思敏), Yi-Yu Lin(林诒玉). Chin. Phys. B, 2016, 25(11): 118402.
No Suggested Reading articles found!