Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰)1, Jyh-Ching Chang(张稚卿)2, Ke-Ning Huang(黄克宁)3, Chen-Sheng Wu(武晨晟)1,†, Yong-Jun Cheng(程勇军)4, Kai Wang(王凯)5, and Yong Wu(吴勇)1,6
1 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Department of Physics, National Tsing Hua University, Hsinchu 300, China; 3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China; 5 Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China; 6 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
Abstract The electron-impact ionization of lithium-like ions C3+, N4+, O5+, Ne7+, and Fe23+ is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction. Total cross sections are computed for incident energies from 1 to 10 times of ionization energy and better agreements with the experimental results are obtained in comparison with the theoretical data available. It is found that the indirect ionization processes become significant for the incident energy larger than about four times of the ionization energy. Contributions from the exchange effects along the isoelectronic sequence are also discussed and found to be important. The present method can be used to obtain systematic ionization cross sections for highly charged ions across a wide incident energy range.
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and U1832201), the Science Challenge Project (Grant No. TZ2016005), and the CAEP Foundation (Grant No. CX2019022).
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇) Electron-impact ionization cross section calculations for lithium-like ions 2022 Chin. Phys. B 31 013401
[1] Mark T D 1992 Plasma Phys. Contr. F34 2083 [2] Capitelli M, Colonna G, D'Ammando G, Laporta V and Laricchiuta A 2013 Phys. Plasmas20 101609 [3] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A and Froula D H 2017 Phys. Rev. E95 063204 [4] Beiersdorfer P, Brown G V, McKelvey A, Shepherd R, Hoarty D J, Brown C R D, Hill M P, Hobbs L M R, James S F and Morton J and and Wilson L 2019 Phys. Rev. A100 012511 [5] Alberti A, Munafò A, Koll M, Nishihara M, Pantano C, Freund J B, Elliott G S and Panesi M 2019 J. Phys. D: Appl. Phys.53 025201 [6] Weber S, Wu Y and Wang J G 2021 Matter Radiat. Extremes6 023002 [7] Duponchelle M, Khouilid M, Oualim E M, Zhang H and Defrance P 1997 J. Phys. B: At. Mol. Opt. Phys.30 729 [8] Chen C Y, Yan S X, Teng Z X, Wang Y S, Yang F J and Sun Y S 1998 J. Phys. B: At. Mol. Opt. Phys.31 2667 [9] Jakubowicz H and Moores D L 1981 J. Phys. B: At. Mol. Phys.14 3733 [10] Riahi A, Laghdas K, Reid R H G, Rachafi S, Joachain C J and Defrance P 2001 J. Phys. B: At. Mol. Opt. Phys.34 175 [11] Falk R A and Dunn G H 1983 Phys. Rev. A27 754 [12] Woitke O, Djurić N, Dunn G H, Bannister M E, Smith A C H, Wallbank B, Badnell N R and Pindzola M S 1998 Phys. Rev. A58 4512 [13] Crandall D H, Phaneuf R A, Hasselquist B E and Gregory D C 1979 J. Phys. B: At. Mol. Phys.12 L249 [14] Crandall D H, Phaneuf R A, Gregory D C, Howald A M, Mueller D W, Morgan T J, Dunn G H, Griffin D C and Henry R J W 1986 Phys. Rev. A34 1757 [15] Teng H, Knopp H, Ricz S, Schippers S, Berrington K A and Müller A 2000 Phys. Rev. A61 060704 [16] Kunc J A 1980 J. Phys. B: At. Mol. Phys.13 587 [17] Defrance P, Chantrenne S, Rachafi S, Belic D S, Jureta J, Gregory D and Brouillard F 1990 J. Phys. B: At. Mol. Opt. Phys.23 2333 [18] Wong K L, Beiersdorfer P, Chen M H, Marrs R E, Reed K J, Scofield J H, Vogel D A and Zasadzinski R 1993 Phys. Rev. A48 2850 [19] Wong K L, Beiersdorfer P, Vogel D, Marrs R and Levine M 1991 Z. Phys. D: At. Mol. Clusters21 S197 [20] Claytor N, Feinberg B, Gould H, Bemis J, Curtis E, Campo J G, Ludemann C A and Vane C R 1988 Phys. Rev. Lett.61 2081 [21] Rudge M R H 1968 Rev. Mod. Phys.40 564 [22] Younger S M 1980 Phys. Rev. A22 111 [23] Younger S M 1981 J. Quant. Spectrosc. Radiat. Transfer26 329 [24] Fursa D V and Bray I 1997 J. Phys. B: At. Mol. Phys.30 757 [25] Bartschat K and Burke P G 1987 Phys. B: At. Mol. Phys.20 3191 [26] Huang K N 1983 Phys. Rev. A28 1869 [27] Kao H C, Kuo T Y, Yen H P, Wei C M and Huang K N 1992 Phys. Rev. A45 4646 [28] Hsu S W, Kuo T Y, Chen C M J and Huang K N 1992 Phys. Lett. A167 277 [29] Kuo T Y, Chen C M J, Hsu S W and Huang K N 1993 Phys. Rev. A48 357 [30] Chang J C, Wei C M, Kuo T Y and Huang K N 1994 J. Phys. B: At. Mol. Opt. Phys.27 4715 [31] Kuo T Y and Huang K N 2001 Phys. Rev. A64 062711 [32] Kuo T Y and Huang K N 2001 Phys. Rev. A64 032710 [33] Kuo T Y and Huang K N 2003 J. Phys. B: At. Mol. Opt. Phys.36 353 [34] Chang J C, Sun H L, Cheng W Y and Huang K N 2004 Phys. Rev. A69 052713 [35] Norrington P H and Grant I P 1987 J. Phys. B: At. Mol. Phys.20 4869 [36] Ait-Tahar S, Grant I P and Norrington P H 1996 Phys. Rev. A54 3984 [37] Chang J J 1977 J. Phys. B: At. Mol. Phys.10 3335 [38] Reed K J and Chen M H 1992 Phys. Rev. A45 4519 [39] Desclaux J P 1975 Comput. Phys. Commun.9 31 [40] Sun H L, Chang J C, Hsiao J T, Lin S F and Huang K N 2010 Phys. Rev. A4 81
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.