Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 013401    DOI: 10.1088/1674-1056/ac229e

Electron-impact ionization cross section calculations for lithium-like ions

Guo-Jie Bian(卞国杰)1, Jyh-Ching Chang(张稚卿)2, Ke-Ning Huang(黄克宁)3, Chen-Sheng Wu(武晨晟)1,†, Yong-Jun Cheng(程勇军)4, Kai Wang(王凯)5, and Yong Wu(吴勇)1,6
1 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Department of Physics, National Tsing Hua University, Hsinchu 300, China;
3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
5 Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China;
6 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
Abstract  The electron-impact ionization of lithium-like ions C3+, N4+, O5+, Ne7+, and Fe23+ is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction. Total cross sections are computed for incident energies from 1 to 10 times of ionization energy and better agreements with the experimental results are obtained in comparison with the theoretical data available. It is found that the indirect ionization processes become significant for the incident energy larger than about four times of the ionization energy. Contributions from the exchange effects along the isoelectronic sequence are also discussed and found to be important. The present method can be used to obtain systematic ionization cross sections for highly charged ions across a wide incident energy range.
Keywords:  total cross sections      electron-impact ionization      excitation-autoionization      distorted-wave  
Received:  06 July 2021      Revised:  25 August 2021      Accepted manuscript online:  01 September 2021
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.80.Dp (Atomic excitation and ionization)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and U1832201), the Science Challenge Project (Grant No. TZ2016005), and the CAEP Foundation (Grant No. CX2019022).
Corresponding Authors:  Chen-Sheng Wu     E-mail:

Cite this article: 

Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇) Electron-impact ionization cross section calculations for lithium-like ions 2022 Chin. Phys. B 31 013401

[1] Mark T D 1992 Plasma Phys. Contr. F 34 2083
[2] Capitelli M, Colonna G, D'Ammando G, Laporta V and Laricchiuta A 2013 Phys. Plasmas 20 101609
[3] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A and Froula D H 2017 Phys. Rev. E 95 063204
[4] Beiersdorfer P, Brown G V, McKelvey A, Shepherd R, Hoarty D J, Brown C R D, Hill M P, Hobbs L M R, James S F and Morton J and and Wilson L 2019 Phys. Rev. A 100 012511
[5] Alberti A, Munafò A, Koll M, Nishihara M, Pantano C, Freund J B, Elliott G S and Panesi M 2019 J. Phys. D: Appl. Phys. 53 025201
[6] Weber S, Wu Y and Wang J G 2021 Matter Radiat. Extremes 6 023002
[7] Duponchelle M, Khouilid M, Oualim E M, Zhang H and Defrance P 1997 J. Phys. B: At. Mol. Opt. Phys. 30 729
[8] Chen C Y, Yan S X, Teng Z X, Wang Y S, Yang F J and Sun Y S 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2667
[9] Jakubowicz H and Moores D L 1981 J. Phys. B: At. Mol. Phys. 14 3733
[10] Riahi A, Laghdas K, Reid R H G, Rachafi S, Joachain C J and Defrance P 2001 J. Phys. B: At. Mol. Opt. Phys. 34 175
[11] Falk R A and Dunn G H 1983 Phys. Rev. A 27 754
[12] Woitke O, Djurić N, Dunn G H, Bannister M E, Smith A C H, Wallbank B, Badnell N R and Pindzola M S 1998 Phys. Rev. A 58 4512
[13] Crandall D H, Phaneuf R A, Hasselquist B E and Gregory D C 1979 J. Phys. B: At. Mol. Phys. 12 L249
[14] Crandall D H, Phaneuf R A, Gregory D C, Howald A M, Mueller D W, Morgan T J, Dunn G H, Griffin D C and Henry R J W 1986 Phys. Rev. A 34 1757
[15] Teng H, Knopp H, Ricz S, Schippers S, Berrington K A and Müller A 2000 Phys. Rev. A 61 060704
[16] Kunc J A 1980 J. Phys. B: At. Mol. Phys. 13 587
[17] Defrance P, Chantrenne S, Rachafi S, Belic D S, Jureta J, Gregory D and Brouillard F 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2333
[18] Wong K L, Beiersdorfer P, Chen M H, Marrs R E, Reed K J, Scofield J H, Vogel D A and Zasadzinski R 1993 Phys. Rev. A 48 2850
[19] Wong K L, Beiersdorfer P, Vogel D, Marrs R and Levine M 1991 Z. Phys. D: At. Mol. Clusters 21 S197
[20] Claytor N, Feinberg B, Gould H, Bemis J, Curtis E, Campo J G, Ludemann C A and Vane C R 1988 Phys. Rev. Lett. 61 2081
[21] Rudge M R H 1968 Rev. Mod. Phys. 40 564
[22] Younger S M 1980 Phys. Rev. A 22 111
[23] Younger S M 1981 J. Quant. Spectrosc. Radiat. Transfer 26 329
[24] Fursa D V and Bray I 1997 J. Phys. B: At. Mol. Phys. 30 757
[25] Bartschat K and Burke P G 1987 Phys. B: At. Mol. Phys. 20 3191
[26] Huang K N 1983 Phys. Rev. A 28 1869
[27] Kao H C, Kuo T Y, Yen H P, Wei C M and Huang K N 1992 Phys. Rev. A 45 4646
[28] Hsu S W, Kuo T Y, Chen C M J and Huang K N 1992 Phys. Lett. A 167 277
[29] Kuo T Y, Chen C M J, Hsu S W and Huang K N 1993 Phys. Rev. A 48 357
[30] Chang J C, Wei C M, Kuo T Y and Huang K N 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4715
[31] Kuo T Y and Huang K N 2001 Phys. Rev. A 64 062711
[32] Kuo T Y and Huang K N 2001 Phys. Rev. A 64 032710
[33] Kuo T Y and Huang K N 2003 J. Phys. B: At. Mol. Opt. Phys. 36 353
[34] Chang J C, Sun H L, Cheng W Y and Huang K N 2004 Phys. Rev. A 69 052713
[35] Norrington P H and Grant I P 1987 J. Phys. B: At. Mol. Phys. 20 4869
[36] Ait-Tahar S, Grant I P and Norrington P H 1996 Phys. Rev. A 54 3984
[37] Chang J J 1977 J. Phys. B: At. Mol. Phys. 10 3335
[38] Reed K J and Chen M H 1992 Phys. Rev. A 45 4519
[39] Desclaux J P 1975 Comput. Phys. Commun. 9 31
[40] Sun H L, Chang J C, Hsiao J T, Lin S F and Huang K N 2010 Phys. Rev. A 4 81
[1] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[2] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
[3] Influence of electron correlations on double-capture process in proton helium collisions
Hoda Ghavaminia, Ebrahim Ghanbari-Adivi. Chin. Phys. B, 2015, 24(7): 073401.
[4] Projectile angular-differential cross sections for single electron transfer in fast He+-He collisions
Ebrahim Ghanbari-Adivi, Hoda Ghavaminia. Chin. Phys. B, 2015, 24(3): 033401.
[5] Electron correlation in fast ion-impact single ionization of helium atoms
E. Ghanbari-Adivi, S. Eskandari. Chin. Phys. B, 2015, 24(1): 013401.
[6] Electron impact ionization of neon and neonic ions under distorted-wave Born approximation
Zhou Li-Xia (周丽霞), Yan You-Guo (燕友果). Chin. Phys. B, 2014, 23(5): 053402.
[7] Polarization effect in (e, 2e) reaction process for Ar (3s) in coplanar asymmetric geometry
Zhou Li-Xia (周丽霞), Wang Dian-Sheng (王殿生), Yan You-Guo (燕友果), Wang Cai-Ling (王彩玲). Chin. Phys. B, 2014, 23(11): 113402.
[8] Cross section for impact single ionization of B2+ by H+
Ye Dan-Dan (叶丹丹), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Ning Li-Na (宁丽娜). Chin. Phys. B, 2013, 22(5): 053401.
[9] Total cross sections for electron scattering from sulfur compounds
Tan Xiao-Ming (谭晓明), Wang Yan-Wen (王艳文). Chin. Phys. B, 2013, 22(2): 023403.
[10] (e, 2e) triple-differential cross sections for Ag+(4p, 4s) in coplanar symmetric geometry
Zhou Li-Xia (周丽霞), Yan You-Guo (燕友果). Chin. Phys. B, 2012, 21(9): 093401.
[11] Electron impact excitation rate coefficients of N II ion
Yang Ning-Xuan(杨宁选),Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), and Xie Lu-You(颉录有). Chin. Phys. B, 2010, 19(9): 093101.
[12] The (e, 2e) triple differential cross sections of Cu+ (3p) in coplanar asymmetric geometry
Zhou Li-Xia (周丽霞), Yan You-Guo (燕友果), Men Fu-Dian (门福殿). Chin. Phys. B, 2010, 19(7): 073401.
[13] Positron scattering and ionization of neon atoms —— theoretical investigations
Harshit N. Kothari and K. N. Joshipura. Chin. Phys. B, 2010, 19(10): 103402.
[14] Additivity rule for electron scattering on hydrocarbon molecules—considering two different shielding effects
Sun Jin-Feng (孙金锋), Du Chao-Ling (杜朝玲), Shi De-Heng (施德恒), Liu Yu-Fang (刘玉芳). Chin. Phys. B, 2004, 13(9): 1418-1422.
[15] Electron scattering from molecule CH4 at 10-5000eV
Liu Yu-Fang (刘玉芳), Zhu Zun-Lüe (朱遵略), Sun Jin-Feng (孙金锋), Cong Shu-Lin (丛书林), Han Ke-Li (韩克利). Chin. Phys. B, 2003, 12(7): 750-752.
No Suggested Reading articles found!