Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097201    DOI: 10.1088/1674-1056/aba9cf

Temperature-switching logic in MoS2 single transistors

Xiaozhang Chen(陈孝章)1, Lehua Gu(顾乐华)2, Lan Liu(刘岚)1, Huawei Chen(陈华威)1, Jingyu Li(栗敬俣)1, Chunsen Liu(刘春森)3, Peng Zhou(周鹏)1
1 The State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China;
2 Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures(Ministry of Education), and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 School of Computer Science, Fudan University, Shanghai 200433, China

Due to their unique characteristics, two-dimensional (2D) materials have drawn great attention as promising candidates for the next generation of integrated circuits, which generate a calculation unit with a new working mechanism, called a logic transistor. To figure out the application prospects of logic transistors, exploring the temperature dependence of logic characteristics is important. In this work, we explore the temperature effect on the electrical characteristic of a logic transistor, finding that changes in temperature cause transformation in the calculation: logical output converts from ‘AND’ at 10 K to ‘OR’ at 250 K. The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature. In the experiment, the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K. The change of threshold voltage with temperature is consistent with the energy band, which confirms the theoretical analysis. Therefore, as a promising material for future integrated circuits, the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.

Keywords:  molybdenum disulfide (MoS2)      logic      temperature dependence      mobility  
Received:  17 June 2020      Revised:  07 July 2020      Accepted manuscript online:  28 July 2020
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61925402, 61851402, and 61734003), Science and Technology Commission of Shanghai Municipality, China (Grant No. 19JC1416600), National Key Research and Development Program of China (Grant No. 2017YFB0405600), and Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program, China (Grant No. 18SG01).

Corresponding Authors:  Chunsen Liu, Peng Zhou     E-mail:;

Cite this article: 

Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏) Temperature-switching logic in MoS2 single transistors 2020 Chin. Phys. B 29 097201

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J and Hu C 2016 Science 354 99
[3] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
[4] Huang M, Li S, Zhang Z, Xiong X, Li X and Wu Y 2017 Nat. Nanotechnol. 12 1148
[5] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H and Zhou P 2020 InfoMat 261 290
[6] Wachter S, Polyushkin D K, Bethge O and Mueller T 2017 Nat. Commun. 8 14948
[7] Liu C, Chen H, Hou X, Zhang H, Han J, Jiang Y G, Zeng X, Zhang D W and Zhou P 2019 Nat. Nanotechnol 14 662
[8] Yang Z, Wu Z, Lyu Y and Hao J 2019 InfoMat 1 98
[9] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Funct. Mater. 27 1604093
[10] Radisavljevic B, Radenovic A, Brivio J, Giacometti i V and Kis A 2011 Nat. Nanotechnol. 6 147
[11] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[12] Jin C, Kim J, Suh J, Shi Z, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T and Tongay S 2017 Nat. Phys. 13 127
[13] Plechinger G, Schrettenbrunner F X, Eroms J, Weiss D, Schueller C and Korn T 2012 Phys. Status. Solidi. Rapid. Res. Lett. 6 126
[14] Hannewald K, Stojanović V, Schellekens J, Bobbert P, Kresse G and Hafner J 2004 Phys. Rev. B 69 075211
[15] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2012 Nano Lett. 13 100
[16] Neamen D A 2012 Semiconductor physics and devices: basic principles (New York: McGraw-Hill)
[17] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[6] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[9] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[10] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[11] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[12] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[15] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
No Suggested Reading articles found!