Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104211    DOI: 10.1088/1674-1056/ac1924
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system

Jing Wang(王婧)1,2 and Xue-Dong Tian(田雪冬)2,†
1 College of Physics, Tonghua Normal University, Tonghua 134000, China;
2 College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  The ideal optomechanically induced transparency effects of an output probe field are investigated in a cavity optoelectromechanical system, which is composed of an optical cavity, a charged mechanical resonator, and a charged object. Although the charged mechanical resonator damping rate is nonzero, the ideal optomechanically induced transparency can still appear due to the non-rotating wave approximation effect in the system. The location of optomechanically induced transparency dip can be controlled via the Coulomb coupling strength. In addition, we find that both the transparency window width and the maximum dispersion curve slope are closely related to the optical cavity decay rate.
Keywords:  ideal optomechanically induced transparency      cavity optoelectromechanical system      transparency window width  
Received:  22 May 2021      Revised:  14 July 2021      Accepted manuscript online:  30 July 2021
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2018GXNSFBA281003, 2019GXNSFAA245034, and AD19245180) and Science Fund of Tonghua Normal University (Grant No. 202017ND).
Corresponding Authors:  Xue-Dong Tian     E-mail:  snowtxd@mailbox.gxnu.edu.cn

Cite this article: 

Jing Wang(王婧) and Xue-Dong Tian(田雪冬) Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system 2021 Chin. Phys. B 30 104211

[1] Yan X B 2020 Phys. Rev. A 101 043820
[2] Yan X B 2021 J. Phys. B 54 035401
[3] Yan X B 2021 Physica E 131 114759
[4] Agarwal G S and Huang S M 2010 Phys. Rev. A 81 041803
[5] Weis S, Riviére R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2011 Science 330 1520
[6] He B, Yang L and Jiang X S 2018 Phys. Rev. Lett. 120 203904
[7] Yan X B, Cui C L, Gu K H, Tian X D, Fu C B and Wu J H 2014 Opt. Express 22 4886
[8] Yan X B, Deng Z J, Tian X D and Wu J H 2019 Opt. Express 27 24393
[9] Guo Y J, Li K, Nie W J and Li Y 2014 Phys. Rev. A 90 053841
[10] Wang J 2021 Chin. Phys. B 30 024204
[11] Wang J 2014 Acta Optica Sinica 40 1827001
[12] Hou B P, Wei L F and Wang S J 2015 Phys. Rev. A 92 033829
[13] Yang Q, Hou B P and Lai D G 2017 Opt. Express 25 9697
[14] Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F and Zhang S 2018 Ann. Phys. 530 1800228
[15] Ullah K, Jing H and Saif F 2018 Phys. Rev. A 97 033812
[16] Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X and Wu J H 2015 Opt. Commun 338 569
[17] Lü H, Wang C Q, Yang L and Jing H 2018 Phys. Rev. Appl. 10 014006
[18] Zhang H, Saif F, Jiao Y and Jing H 2018 Opt. Express 26 25199
[19] Jiao Y F, Lu T X and Jing H 2018 Phys. Rev. A 97 013843
[20] Xiong H, Huang Y M, Wan L L and Wu Y 2016 Phys. Rev. A 94 013816
[21] Xiao R J, Pan G X and Zhou L 2015 Int. J. Theor. Phys. 54 3665
[22] Kong C, Li S, You C, Xiong H and Wu Y 2018 Sci. Rep. 8 1060
[23] Xu X W, Song L N, Zheng Q, Wang Z H and Li Y 2018 Phys. Rev. A 98 063845
[24] Chen B, Jiang C and Zhu K D 2011 Phys. Rev. A 83 055803
[25] Liu Y C, Li B B and Xiao Y F 2017 Nanophotonics 6 789
[26] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[27] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
[28] Xiong H and Wu Y 2018 Appl. Phys. Rev. 5 031305
[29] Gao Y P, Wang T J, Cao C, Mi S C, Yang D, Zhang Y and Wang C 2017 IEEE Photon. J. 9 6800411
[30] Xiong H, Si L G, Lv X Y, Yang X X and Wu Y 2015 Sci. China Phys. Mech. Astron. 58 1
[31] Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R and Wang C 2016 Sci. Rep. 6 22920
[32] Cao C, Mi S C, Wang T J, Zhang R and Wang C 2016 IEEE J. Quantum Electron. 52 7000205
[33] Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J and Wang C 2017 Optik 130 659
[34] Xiong X R, Gao Y P, Liu X F, Cao C, Wang T J and Wang C 2018 Sci. China: Phys., Mech. Astron. 61 90322
[35] Wu S C, Qin L G, Lu J and Wang Z Y 2019 Chin. Phys. B 28 074204
[36] Gu K H, Yan D, Zhang M L, Yin J Z and Fu C B 2019 Acta Phys. Sin. 68 54201 (in Chinese)
[37] Li S, Li H Z, Xu J P, Zhu C J and Yang Y P 2019 Acta Phys. Sin. 68 174202 (in Chinese)
[38] Liu N, Huang S, Li J Q and Liang J Q 2019 Acta Phys. Sin. 68 193701 (in Chinese)
[39] Bai C H, Wang D Y, Zhang S, Liu S T and Wang H F 2021 Phys. Rev. A 103 033508
[40] Wang J, Tian X D, Liu Y M, Cui C L and Wu J H 2018 Laser Phys. 28 065202
[41] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[42] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[43] Chen B, Wang L D, Zhang J, Zhai A P and Xue H B 2016 Phys. Lett. A 380 798
[44] Hu C S, Huang X R, Shen L T, Yang Z B and Wu H Z 2017 Eur. Phys. J. D 71 24
[45] Wang J 2020 Chin. Phys. B 29 034210
[46] Jiang C, Song L N and Li Y 2018 Phys. Rev. A 97 053812
[47] Qin G Q, Yang H, Mao Xuan, Wen J W, Wang M, Ruan D and Long G L 2020 Opt. Express 28 580
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[4] Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate
Li-Wei Liu(刘利伟), Chun-Guang Du(杜春光), Guo-Heng Zhang(张国恒), Qiong Chen(陈琼), Yu-Qing Shi(石玉清), Pei-Yu Wang(王培煜), and Yu-Qing Zhang(张玉青). Chin. Phys. B, 2022, 31(10): 103701.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[7] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[8] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[9] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[10] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[11] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[12] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[13] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[14] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!