Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 103701    DOI: 10.1088/1674-1056/ac6ed7
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate

Li-Wei Liu(刘利伟)1,2, Chun-Guang Du(杜春光)3,†, Guo-Heng Zhang(张国恒)1, Qiong Chen(陈琼)1, Yu-Qing Shi(石玉清)1, Pei-Yu Wang(王培煜)1, and Yu-Qing Zhang(张玉青)4
1. College of Electrical Engineering, Northwest Minzu University, Lanzhou 730000, China;
2. Visiting Scholar, Department of Physics, Tsinghua University, Beijing 100084, China;
3. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
4. School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  We theoretically investigated a second-order optomechanical-induced transparency (OMIT) process of a hybrid optomechanical system (COMS), which a Bose—Einstein condensate (BEC) in the presence of atom—atom interaction trapped inside a cavity with a moving end mirror. The advantage of this hybrid COMS over a bare COMS is that the frequency of the second mode is controlled by the s-wave scattering interaction. Based on the traditional linearization approximation, we derive analytical solutions for the output transmission intensity of the probe field and the dimensionless amplitude of the second-order sideband (SS). The numerical results show that the transmission intensity of the probe field and the dimensionless amplitude of the SS can be controlled by the s-wave scattering frequency. Furthermore, the control field intensities, the effective detuning, the effective coupling strength of the cavity field with the Bogoliubov mode are used to control the transmission intensity of the probe field and the dimensionless amplitude of the SS.
Keywords:  second-order sideband      Bose—Einstein condensate      cavity optomechanical  
Received:  28 January 2022      Revised:  29 April 2022      Accepted manuscript online: 
PACS:  37.30.+i (Atoms, molecules, andions incavities)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034 and 21663026), the Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA509), the Fundamental Research Funds for the Central Universities of College of Electrical Engineering, Northwest Minzu University (Grant Nos. 31920210016, 31920190006, and 31920200006), and the Scientific Research Project of Hunan Educational Department, China (Grant No. 19B206).
Corresponding Authors:  Chun-Guang Du     E-mail:  ducg@mail.tsinghua.edu.cn

Cite this article: 

Li-Wei Liu(刘利伟), Chun-Guang Du(杜春光), Guo-Heng Zhang(张国恒), Qiong Chen(陈琼), Yu-Qing Shi(石玉清), Pei-Yu Wang(王培煜), and Yu-Qing Zhang(张玉青) Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate 2022 Chin. Phys. B 31 103701

[1] Kippenberg T J and Vahala K J 2008 Science 321 1172
[2] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[3] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[4] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 755
[5] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[6] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[7] Zhang W, Qin L G, Tian L J and Wang Z Y 2021 Chin. Phys. B 30 094203
[8] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D and Painter O 2011 Nature 472 69
[9] Liao Q H, Wang X Q, He G Q and Zhou L T 2021 Chin. Phys. B 30 094205
[10] Kanamoto R and Meystre P 2010 Phys. Rev. Lett. 104 063601
[11] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y and Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602
[12] Xiong W, Jin D Y, Qiu Y Y, Lam C and You J Q 2016 Phys. Rev. A 93 023844
[13] Dalafi A and Naderi M H 2017 Phys. Rev. A 95 043601
[14] Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815
[15] Xiong H, Si L G, Yang X X and Wu Y 2015 Appl. Phys. Lett. 107 091116
[16] Xiong H, Si L G, Lü X Y and Wu Y 2016 Opt. Express 24 5773
[17] Li J, Yu R, Ma J and Wu Y 2015 Phys. Rev. A 91 063834
[18] Jiao Y, Lu H, Qian J, Li Y and Jing H 2016 New J. Phys. 18 083034
[19] Liu Z X, Xiong H and Wu Y 2018 Phys. Rev. A 97 013801
[20] DelHaye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[21] Li J, Yu R, Ding C, Wang W and Wu Y 2014 Phys. Rev. A 90 033830
[22] Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J and Wang C 2017 Optik 130 659
[23] Xu W L, Gao Y P, Cao C, Wang T J and Wang C 2020 Phys. Rev. A 102 043519
[24] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601
[25] Urrios D N, Capuj N E, Colombano M F, García P D, Sledzinska M, Alzina F, Griol A, Martínez A and Sotomayor-Torres C M 2007 Nature 450 1214
[26] Gao Y P, Cao C, Duan Y W, Liu X F, Pang T T, Wang T J and Wang C 2019 Nanophotonics 9 1953
[27] Wang G L, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406
[28] Yang X H, Yin Z Y and Xiao M 2019 Phys. Rev. A 99 013811
[29] Li Y and Zhu K 2013 Photon. Res. 1 16
[30] Xiong H, Liu Z X and Wu Y 2017 Opt. Lett. 42 3630
[31] Kong C, Xiong H and Wu Y 2017 Phys. Rev. A 95 033820
[32] Li L, Yang W X, Zhang Y, Shui T, Chen A X and Jiang Z M 2018 Phys. Rev. A 98 6800411
[33] Gao Y, Wang T J, Cao C, Mi S C, Yang D Q, Zhang Y and Wang C 2018 IEEE Photon. J. 9 6800411
[34] Borkje K, Nunnenkamp A, Teufel J D and Girvin S M 2013 Phys. Rev. Lett. 111 053603
[35] Liu X F, Li Y and Jing H 2016 Sci. Rep. 6 27102
[36] Liu S, Yang W X, Zhu Z, Shui T and Li L 2018 Opt. Lett. 43 9
[37] Li J H, Zhang S Z, Yu R, Zhang D and Wu Y 2014 Phys. Rev. A 90 053832
[38] Cao C, Mi S C, Gao Y P, He L Y, Yang D Q, Wang T J, Zhang R and Wang C 2016 Sci. Rep. 6 22920
[39] Cao C, Mi S C, Wang T J, Zhang R and Wang C 2016 IEEE J. Quantum Electron. 52 2563779
[40] Paternostro M, Kim M S and Ham B S 2003 Phys. Rev. A 67 023811
[41] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[42] Huang S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055504
[43] Seok H, Buchmann L F, Singh S and Meystre P 2012 Phys. Rev. A 86 063829
[44] Qu K and Agarwal G S 2013 Phys. Rev. A 87 063813
[45] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817
[46] Akram M J, Ghafoor F and Saif F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065502
[47] Bemani F, Motazedifard A, Roknizadeh R, Naderi M H and Vitali D 2017 Phys. Rev. A 96 023805
[48] Gupta S, Moore K L, Murch K W and Stamper-Kurn D M 2007 Phys. Rev. Lett. 99 213601
[49] Brennecke F, Donner T, Ritter S, Bourdel T, Kohl M and Esslinger T 2008 Nature 450 268
[50] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[51] Bhattacherjee A B 2009 Phys. Rev. A 80 043607
[52] Bhattacherjee A B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205301
[53] Kanamoto R and Meystre P 2010 Phys. Scr. 82 038111
[54] Asjad M and Saif F 2011 Phys. Rev. A 84 033606
[55] Chiara G D, Paternostro M and Palma G M 2011 Phys. Rev. A 83 052324
[56] Rogers B, Paternostro M, Palma G M and Chiara G D 2012 Phys. Rev. A 86 042323
[57] Dalafi A and Naderi M H 2017 Phys. Rev. A 96 033631
[58] Mahajan S, Kumar T, Bhattacherjee A B and Mohan M 2013 Phys. Rev. A 87 013621
[59] Mahajan S, Aggarwal N, Bhattacherjee A B and Mohan M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 085301
[60] Dalafi A, Naderi M H, Soltanolkotabi M and Barzanjeh S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 235502
[61] Yasir K A, Zhuang L and Liu W M 2017 Phys. Rev. A 95 013810
[62] Motazedifard A, Bemani F, Naderi M H, Roknizadeh R and Vitali D 2016 New J. Phys. 18 073040
[63] Molignini P, Papariello L, Lode A U J and Chitra R 2018 Phys. Rev. A 98 053620
[64] Yasir K A and Liu W M 2016 Sci. Rep. 6 22651
[65] Javed Akram M, Ghafoor F, Miskeen Khan M and Saif F 2017 Phys. Rev. A 95 023810
[66] Liu L W, Gengzang D J, An X J and Wang P Y 2018 Chin. Phys. B 27 034205
[67] Liu L W, Zhang G H, An X J, Hai L, Jiao H Y and Wang P Y 2019 Laser Phys. 29 065501
[68] Zhang K, Chen W, Bhattacharya M and Meystre P 2010 Phys. Rev. A 81 013802
[69] Nagy D, Szirmai G and Domokos P 2013 Eur. Phys. J. D 67 124
[70] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[1] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[4] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[5] Optomechanically induced transparency with Bose–Einstein condensate in double-cavity optomechanical system
Li-Wei Liu(刘利伟), Duo-Jie Gengzang(更藏多杰), Xiu-Jia An(安秀加), Pei-Yu Wang(王培煜). Chin. Phys. B, 2018, 27(3): 034205.
[6] Triple optomechanical induced transparency in a two-cavity system
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jun Jing(景俊), Guo-Hong Yang(杨国宏), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2016, 25(5): 054203.
[7] Controlling the collision between two solitons in the condensates by a double-barrier potential
Li Zhi-Jian(李志坚) and Li Jin-Hui(李锦茴) . Chin. Phys. B, 2011, 20(8): 080502.
No Suggested Reading articles found!