|
|
Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate |
Li-Wei Liu(刘利伟)1,2, Chun-Guang Du(杜春光)3,†, Guo-Heng Zhang(张国恒)1, Qiong Chen(陈琼)1, Yu-Qing Shi(石玉清)1, Pei-Yu Wang(王培煜)1, and Yu-Qing Zhang(张玉青)4 |
1. College of Electrical Engineering, Northwest Minzu University, Lanzhou 730000, China; 2. Visiting Scholar, Department of Physics, Tsinghua University, Beijing 100084, China; 3. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 4. School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
Abstract We theoretically investigated a second-order optomechanical-induced transparency (OMIT) process of a hybrid optomechanical system (COMS), which a Bose—Einstein condensate (BEC) in the presence of atom—atom interaction trapped inside a cavity with a moving end mirror. The advantage of this hybrid COMS over a bare COMS is that the frequency of the second mode is controlled by the s-wave scattering interaction. Based on the traditional linearization approximation, we derive analytical solutions for the output transmission intensity of the probe field and the dimensionless amplitude of the second-order sideband (SS). The numerical results show that the transmission intensity of the probe field and the dimensionless amplitude of the SS can be controlled by the s-wave scattering frequency. Furthermore, the control field intensities, the effective detuning, the effective coupling strength of the cavity field with the Bogoliubov mode are used to control the transmission intensity of the probe field and the dimensionless amplitude of the SS.
|
Received: 28 January 2022
Revised: 29 April 2022
Accepted manuscript online:
|
PACS:
|
37.30.+i
|
(Atoms, molecules, andions incavities)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034 and 21663026), the Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA509), the Fundamental Research Funds for the Central Universities of College of Electrical Engineering, Northwest Minzu University (Grant Nos. 31920210016, 31920190006, and 31920200006), and the Scientific Research Project of Hunan Educational Department, China (Grant No. 19B206). |
Corresponding Authors:
Chun-Guang Du
E-mail: ducg@mail.tsinghua.edu.cn
|
Cite this article:
Li-Wei Liu(刘利伟), Chun-Guang Du(杜春光), Guo-Heng Zhang(张国恒), Qiong Chen(陈琼), Yu-Qing Shi(石玉清), Pei-Yu Wang(王培煜), and Yu-Qing Zhang(张玉青) Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate 2022 Chin. Phys. B 31 103701
|
[1] Kippenberg T J and Vahala K J 2008 Science 321 1172 [2] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29 [3] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [4] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 755 [5] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [6] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [7] Zhang W, Qin L G, Tian L J and Wang Z Y 2021 Chin. Phys. B 30 094203 [8] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D and Painter O 2011 Nature 472 69 [9] Liao Q H, Wang X Q, He G Q and Zhou L T 2021 Chin. Phys. B 30 094205 [10] Kanamoto R and Meystre P 2010 Phys. Rev. Lett. 104 063601 [11] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y and Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602 [12] Xiong W, Jin D Y, Qiu Y Y, Lam C and You J Q 2016 Phys. Rev. A 93 023844 [13] Dalafi A and Naderi M H 2017 Phys. Rev. A 95 043601 [14] Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815 [15] Xiong H, Si L G, Yang X X and Wu Y 2015 Appl. Phys. Lett. 107 091116 [16] Xiong H, Si L G, Lü X Y and Wu Y 2016 Opt. Express 24 5773 [17] Li J, Yu R, Ma J and Wu Y 2015 Phys. Rev. A 91 063834 [18] Jiao Y, Lu H, Qian J, Li Y and Jing H 2016 New J. Phys. 18 083034 [19] Liu Z X, Xiong H and Wu Y 2018 Phys. Rev. A 97 013801 [20] DelHaye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214 [21] Li J, Yu R, Ding C, Wang W and Wu Y 2014 Phys. Rev. A 90 033830 [22] Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J and Wang C 2017 Optik 130 659 [23] Xu W L, Gao Y P, Cao C, Wang T J and Wang C 2020 Phys. Rev. A 102 043519 [24] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 [25] Urrios D N, Capuj N E, Colombano M F, García P D, Sledzinska M, Alzina F, Griol A, Martínez A and Sotomayor-Torres C M 2007 Nature 450 1214 [26] Gao Y P, Cao C, Duan Y W, Liu X F, Pang T T, Wang T J and Wang C 2019 Nanophotonics 9 1953 [27] Wang G L, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406 [28] Yang X H, Yin Z Y and Xiao M 2019 Phys. Rev. A 99 013811 [29] Li Y and Zhu K 2013 Photon. Res. 1 16 [30] Xiong H, Liu Z X and Wu Y 2017 Opt. Lett. 42 3630 [31] Kong C, Xiong H and Wu Y 2017 Phys. Rev. A 95 033820 [32] Li L, Yang W X, Zhang Y, Shui T, Chen A X and Jiang Z M 2018 Phys. Rev. A 98 6800411 [33] Gao Y, Wang T J, Cao C, Mi S C, Yang D Q, Zhang Y and Wang C 2018 IEEE Photon. J. 9 6800411 [34] Borkje K, Nunnenkamp A, Teufel J D and Girvin S M 2013 Phys. Rev. Lett. 111 053603 [35] Liu X F, Li Y and Jing H 2016 Sci. Rep. 6 27102 [36] Liu S, Yang W X, Zhu Z, Shui T and Li L 2018 Opt. Lett. 43 9 [37] Li J H, Zhang S Z, Yu R, Zhang D and Wu Y 2014 Phys. Rev. A 90 053832 [38] Cao C, Mi S C, Gao Y P, He L Y, Yang D Q, Wang T J, Zhang R and Wang C 2016 Sci. Rep. 6 22920 [39] Cao C, Mi S C, Wang T J, Zhang R and Wang C 2016 IEEE J. Quantum Electron. 52 2563779 [40] Paternostro M, Kim M S and Ham B S 2003 Phys. Rev. A 67 023811 [41] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [42] Huang S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055504 [43] Seok H, Buchmann L F, Singh S and Meystre P 2012 Phys. Rev. A 86 063829 [44] Qu K and Agarwal G S 2013 Phys. Rev. A 87 063813 [45] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817 [46] Akram M J, Ghafoor F and Saif F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065502 [47] Bemani F, Motazedifard A, Roknizadeh R, Naderi M H and Vitali D 2017 Phys. Rev. A 96 023805 [48] Gupta S, Moore K L, Murch K W and Stamper-Kurn D M 2007 Phys. Rev. Lett. 99 213601 [49] Brennecke F, Donner T, Ritter S, Bourdel T, Kohl M and Esslinger T 2008 Nature 450 268 [50] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235 [51] Bhattacherjee A B 2009 Phys. Rev. A 80 043607 [52] Bhattacherjee A B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205301 [53] Kanamoto R and Meystre P 2010 Phys. Scr. 82 038111 [54] Asjad M and Saif F 2011 Phys. Rev. A 84 033606 [55] Chiara G D, Paternostro M and Palma G M 2011 Phys. Rev. A 83 052324 [56] Rogers B, Paternostro M, Palma G M and Chiara G D 2012 Phys. Rev. A 86 042323 [57] Dalafi A and Naderi M H 2017 Phys. Rev. A 96 033631 [58] Mahajan S, Kumar T, Bhattacherjee A B and Mohan M 2013 Phys. Rev. A 87 013621 [59] Mahajan S, Aggarwal N, Bhattacherjee A B and Mohan M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 085301 [60] Dalafi A, Naderi M H, Soltanolkotabi M and Barzanjeh S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 235502 [61] Yasir K A, Zhuang L and Liu W M 2017 Phys. Rev. A 95 013810 [62] Motazedifard A, Bemani F, Naderi M H, Roknizadeh R and Vitali D 2016 New J. Phys. 18 073040 [63] Molignini P, Papariello L, Lode A U J and Chitra R 2018 Phys. Rev. A 98 053620 [64] Yasir K A and Liu W M 2016 Sci. Rep. 6 22651 [65] Javed Akram M, Ghafoor F, Miskeen Khan M and Saif F 2017 Phys. Rev. A 95 023810 [66] Liu L W, Gengzang D J, An X J and Wang P Y 2018 Chin. Phys. B 27 034205 [67] Liu L W, Zhang G H, An X J, Hai L, Jiao H Y and Wang P Y 2019 Laser Phys. 29 065501 [68] Zhang K, Chen W, Bhattacharya M and Meystre P 2010 Phys. Rev. A 81 013802 [69] Nagy D, Szirmai G and Domokos P 2013 Eur. Phys. J. D 67 124 [70] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|