Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟)1, Li-Guo Qin(秦立国)2,3,†, Li-Jun Tian(田立君)1,‡, and Zhong-Yang Wang(王中阳)3
1 Department of Physics, Shanghai University, Shanghai 200444, China; 2 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China; 3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Abstract We present a scheme with the multiple-induced transparency windows in a hybrid optomechanical device. By studying the transmission of a probe field through the hybrid device, we show the successive generations of three transparent windows induced by multiple factors including tunneling, optomechanical and qubit-phonon coupling interactions, and analyze the physical mechanism of the induced transparency based on a simplified energy-level diagram of the system. Moreover, the effects of the transition frequency and decay rate of the two-level system on the multiple-induced transparency windows are discussed. We find that the transparency windows can be modulated by the coupling interaction between the qubit and NMR, the decay of qubit and the power of the control field. Therefore, the transmission of the probe field can be coherently adjusted in the hybrid cavity optomechanical device with a two-level system.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225 and 11704238) and the Natural Science Foundation of Shanghai, China (Grant No. 16ZR1448400).
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳) Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system 2021 Chin. Phys. B 30 094203
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys.86 1391 [2] Kippenberg T J and Vahala K J 2008 Science321 1172 [3] Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature478 89 [4] Bagheri M, Poot M, Fan L, Marquardt F and Tang H X 2013 Phys. Rev. Lett.111 213902 [5] Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett.114 093602 [6] Schliesser A, Riviére R, Anetsberge G, Arcizet O and Kippenberg T J 2008 Nat. Phys.4 415 [7] Pagel Z, Zhong W C, Parker R H, Olund C T, Yao N Y and Müller H 2020 Phys. Rev. A102 013512 [8] Wang C, Lin Q and He B 2019 Phys. Rev. A99 023829 [9] Chen B, Jiang C and Zhu K D 2011 Phys. Rev. A83 055803 [10] Wu Z, Luo R H, Zhang J Q, Wang Y H, Yang W and Feng M 2017 Phys. Rev. A96 033832 [11] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H L 2011 Phys. Rev. Lett.107 133601 [12] Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y and Jing J 2014 Opt. Commun.410 102. [13] Agarwal G S and Huang S M 2013 Phys. Rev. A85 021801 [14] Qin L Q, Wang Z Y, Ma H Y, Zhang C M, Ren L, Wang L L and Gong S Q 2019 J. Opt. Soc. Am. B36 1544 [15] Agarwal G S and Huang S M 2010 Phys. Rev. A81 041803 [16] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A90 023817 [17] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science330 1520 [18] Xiong H, Si L G, Zheng A S, Yang X Y and Wu Y 2012 Phys. Rev. A86 013815 [19] Liu H, Qin L Q, Tian L J and Ma H Y 2019 Chin. Phys. B28 108502 [20] Lai D G, Wang X, Qin W, Hou B P, Nori F and Liao J Q 2020 Phys. Rev. A102 023707 [21] Yan X B 2020 Phys. Rev. A101 043820 [22] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature472 69 [23] Li L, Nie W J and Chen A X 2016 Sci. Rep.6 35090 [24] Jiang C, Jiang L, Yu H L, Cui Y S, Li X W and Chen G B 2017 Phys. Rev. A96 053821 [25] Huang S M and Agarwal G S 2010 Phys. Rev. A81 033830 [26] Qin L G, Wang Z Y, Ma H Y and Gong S Q 2017 Photon. Res.5 481 [27] Liao J Q and Law C K 2011 Phys. Rev. A83 033820 [28] Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express26 11915 [29] Pirkkalainen J M, Damskägg E, Brandt M, Massel F and Sillanpää M A 2015 Phys. Rev. Lett.115 243601 [30] Yang J Y, Wang D Y, Bai C H, Guan S Y, Gao X Y, Zhu A D and Wang H F 2019 Opt. Express27 22855 [31] Qin L Q, Wang Z Y, Lin G W, Zhao J Y and Gong S Q 2016 IEEE J. Quantum. Electron.53 9300106 [32] Gu W J, Yi Z, Sun L H and Yan Y 2018 Opt. Express26 30773. [33] Bokje K 2019 Phys. Rev. A99 023858 [34] Li G L and Wang X G 2018 Phys. Rev. A98 013803 [35] Zhang F Y, Yan W B and Yang C P 2018 Phys. Rev. A98 042331 [36] Xiong W, Jin D Y, Jing J, Lam C H and You J Q 2015 Phys. Rev. A92 032318 [37] Tian L 2005 Phys. Rev. B72 195411 [38] Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A93 063861 [39] Tian L 2011 Phys. Rev. B84 035417 [40] Ramos T, Sudhir V, Stannigel K, Zoller P and Kippenberg T 2013 Phys. Rev. Lett.110 193602 [41] He Q, Badshah F, Zhang H Y, Ali H, Basit A, Hu Y and Ge G Q 2019 Laser Phys. Lett.16 035202 [42] Cotrufo M, Fiore A and Verhagen E 2017 Phys. Rev. Lett.118 133603 [43] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2015 Phys. Rev. A92 033806 [44] Jiang L, Yuan X R, Cui Y S, Chen G B, Zuo F and Jiang C 2017 Phys. Lett. A381 3289 [45] Gu W J and Yi Z 2014 Opt. Commun.333 261 [46] Xiong W, Jin D Y, Qiu Y, Lam C H and You J Q 2016 Phys. Rev. A93 023844 [47] Ullah Q, Jing H and Saif F 2018 Phys. Rev. A 97 033812 [48] Liu Y L, Wu R, Zhang J, Özdemir K, Yang L, Nori F and Liu Y X 2017 Phys. Lett. A 95 013843 [49] Xiong H and Wu Y 2008 Appl. Phys. Rev. 5 0301305
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.