Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104210    DOI: 10.1088/1674-1056/abf922
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators

Changsong Wu(伍长松) and Jun Zhu(朱君)
College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  Developing a convenient method that can be routinely applied for ascertaining proportions of different vegetable oils employed in commercial blended edible oils remains a significant challenge. We address this issue by proposing a novel method for detecting volume fraction of different oils based on the fact that these oils are optically transparent and have slightly different indices of refraction at a given temperature and wavelength. Accordingly, we develop a highly sensitive sensor for measuring the index of refraction of oil blends based on Fano resonance spectra obtained using a metal-insulator-metal (MIM) waveguide structure comprising a gapped straight waveguide coupled with two L-shaped resonators. The index of refraction sensitivity and figure of merit of the structure are calculated based on modeling using the finite element method, and the waveguide structure is accordingly optimized by adjusting the different geometric parameters to achieve a high-quality Fano resonance spectrum. The optimized structure achieves an ultra-high refractive index sensitivity of 770 nm/RIU in terms of a refractive index unit (RIU) of 1. Moreover, a highly stable linear relationship is obtained between the refractive index of mixed edible oils and the resonance wavelength. Experimental results demonstrate that the proposed structure can detect slight changes in the volume fractions of the components in blended oils.
Keywords:  Fano resonance refractive index sensing      metal-insulator-metal (MIM) waveguide      volume fraction detection  
Received:  17 December 2020      Revised:  20 February 2021      Accepted manuscript online:  19 April 2021
PACS:  42.65.-k (Nonlinear optics)  
  42.79.-e (Optical elements, devices, and systems)  
  42.81.Pa (Sensors, gyros)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51965007) and the “One thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program” of Guangxi, China (Grant No. 2019).
Corresponding Authors:  Jun Zhu     E-mail:  zhujun1985@gxnu.edu.cn

Cite this article: 

Changsong Wu(伍长松) and Jun Zhu(朱君) Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators 2021 Chin. Phys. B 30 104210

[1] Ghosh M, Begg F and Bhattacharyya D T 2017 J. Oleo Sci. 66 217
[2] Xiang W and Gong Q 2020 J. Sci. Food Agr. 100 1124
[3] Xu J, Wang Y T and Liu X F 2015 Opt. Spectrosc. 118 663
[4] Gong W, Shi R and Chen M 2019 J. Food Meas. Charact. 13 2203
[5] Wang X G and Jin Q Z 2018 Chin. Oils Fats 43 1 (in Chinese)
[6] Yang H, Tong P J and Jiang Y R 2017 J. Am. Oil Chem. Soc. 94 631
[7] He D P, Luo Z and Gao P 2020 Sci. Tech. Cereals, Oils Foods 28 1
[8] Xin L and Shi J 2012 Sci. Technol. Food Ind. 33 317 (in Chinese)
[9] Wang L 2010 Research on the Quality and Safety of Edible Blended Vegetable Oil and Supervision Program (PhD Dissertation) (Hunan: Hunan Agricultural University) (in Chinese)
[10] Zhang J H, Bian J M and Liu W 2017 Hunan Agr. Sci. 3 109
[11] Zhu J and Li N 2020 Opt. Express 28 19978
[12] Zhu J and Xu Z J 2019 Opt. Mater. Express 9 435
[13] Xu J, Wang Y T and Liu X F 2015 Opt. Spectrosc. 118 663
[14] Akram H and Pierre B 2017 Opt. Express 25 18566
[15] Gao L, Gao W Z and Luo Z C 2019 Infr. Laser Eng. 48 163
[16] Zhu J, Qin L L and Song S X 2016 Infr. Laser Eng. 45 158
[17] Zhu J and Lou J 2020 Results Phys. 18 103183
[18] Zhu J, Xu Z J, Cong H, Fu D L and Wei D Q 2019 Measurement 144 67
[19] Zhu Q Y, Loke S W, Rolando T R, Frank J and Yong X 2019 ACM Comput. Technol. J. 52 1
[20] Jiang F, Dong D, Cao L and Frater M R 2013 IEEE Trans. Netw. Serv. 10 255
[21] Jiang F, Xia H, Tran Q A, Ha Q M, Tran N Q and Hu J 2017 Knowl.-Based Syst. 130 90
[22] Ni B, Chen X Y, Xiong D Y, Liu H, Hua G H and Chang J H 2015 Opt. Quantum Electron. 47 1339
[23] Chen Z and Yu L 2014 IEEE Photon. J. 6 1
[24] Li C, Li S L and Wang Y L 2017 IEEE Photon. J. 9 1
[25] Luk'Yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P and Giessen H 2010 Nat. Mater. 9 707
[26] Wang J, Wang Y, Zhang X, Yang K, Wang Y and Liu S 2011 Optik 122 1808
[27] Zhang Z D, Luo L, Xue C Y, Zhang W D and Yan S B 2016 Sensors 16 642
[28] Chen J, Sun C and Gong Q 2014 Opt. Lett. 39 52
[29] Kim K Y, Cho Y K, Tae H S and Lee J H 2006 Opt. Express 14 320
[30] Chen H B, Zhang Z D, Yan S B and Jiao G T 2016 Acta Photon. Sin. 45 0823002 (in Chinese)
[31] Zhu J, Xu W J, Xu Z J, Fu D L, Song S X and Wei D Q 2017 Optik 134 187
[32] Ni G X, Mcleod A S, Sun Z, Wang L, Xiong L and Post K W 2018 Nature 557 530
[33] Watanabe Y, Hino K I, Hase M and Maeshima N 2017 Phy. Rev. B 95 014301
[34] Wen K, Hu Y, Chen L, Zhou J, Lei L and Meng Z 2016 Plasmonics 11 315
[35] Yu S L, Zhao T G, Yu J G and Pan D F 2019 Sensors 19 1559
[36] Chen L, Liu Y, Yu Z, Wu D, Ma R and Zhang Y 2016 Opt. Express 24 9975
[37] Wang S, Yu S, Zhao T, Wang Y and Shi X 2020 Opt. Commun. 465 125614
[38] M A Butt, N L Kazanskiy and S N Khonina 2020 Laser Phys. 30 076204
[39] Li Z F, Wen K H, Lei L, Zhou J Y, Zhou D Y, Fang Y H and Wu B Y 2019 IEEE Access 7 59369
[40] Zhang Z D, Wang H Y and Zhang Z Y 2013 Plasmonics 8 797
[41] Zhang Y, Li S, Chen Z, Jiang P, Jiao R, Zhang Y, Wang L and Yu L 2016 Plasmonics 12 1099
[42] Zhang Z D, Ma L J, Gao F, Zhang Y J, Tang J and Cao H L 2017 Chin. Phys. B 26 124212
[43] Chen J, Xu R, Mao P, Zhang Y, Liu Y and Tang C 2015 Plasmonics 10 341
[44] Zhou H, Gao D and Gao L 2018 Plasmonics 13 623
[45] Chen S, Meng L, Hu J and Yang Z 2015 Plasmonics 10 71
[46] He J, Fan C, Wang J, Ding P, Cai G and Cheng Y 2013 J. Opt. 15 025007
[47] Caballero B, García-Martín A and Cuevas J C 2016 ACS Photon. 3 203
[1] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
No Suggested Reading articles found!