|
|
Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model |
Xianfeng Ou(欧先锋)1,2, Jiahao Huang(黄嘉豪)1,2,†, and Chaohong Lee(李朝红)1,2,3 |
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University(Guangzhou Campus), Guangzhou 510275, China; 3 Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China |
|
|
Abstract The open quantum system can be described by either a Lindblad master equation or a non-Hermitian Hamiltonian (NHH). However, these two descriptions usually have different exceptional points (EPs), associated with the degeneracies in the open quantum system. Here, considering a dissipative quantum Rabi model, we study the spectral features of EPs in these two descriptions and explore their connections. We find that, although the EPs in these two descriptions are usually different, the EPs of NHH will be consistent with the EPs of master equation in the weak coupling regime. Further, we find that the quantum Fisher information (QFI), which measures the statistical distance between quantum states, can be used as a signature for the appearance of EPs. Our study may give a theoretical guidance for exploring the properties of EPs in open quantum systems.
|
Received: 08 April 2021
Revised: 08 May 2021
Accepted manuscript online: 20 May 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 12025509, 11874434, and 11704420), and the Science and Technology Program of Guangzhou (China) (Grant No. 201904020024). J.H. is partially supported by the Guangzhou Science and Technology Projects (Grant No. 202002030459). |
Corresponding Authors:
Jiahao Huang
E-mail: hjiahao@mail2.sysu.edu.cn
|
Cite this article:
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红) Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model 2021 Chin. Phys. B 30 110309
|
[1] Xie Q, Zhong H, Murray T B and Lee C 2017 J. Phys. A: Math. Theor. 50 113001 [2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [3] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Reports on Progress in Physics 69 1325 [4] Pedernales J S, Lizuain I, Felicetti S, Romero G, Lamata L and Solano E 2015 Sci. Rep. 5 15472 [5] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Rev. Rev. X. 8 021027 [6] Ballester D, Romero G, García-Ripoll J J, Deppe F and Solano E 2012 Phys. Rev. X. 2 021007 [7] Langford N K, Sagastizabal R, Kounalakis M, Dickel C,Bruno A, Duan L M, Luthi F, Thoen D J, Endo A and DiCarlo L 2017 Nat. Commun. 8 1715 [8] Schneeweiss P, Dareau A and Sayrin C 2018 Phys. Rev. A 98 021801 [9] Felicetti S, Rossatto D Z, Rico E and Forn-Díaz P 2018 Phys. Rev. A 98 013851 [10] Mezzacapo A, Las Heras U, Pedernales J S, DiCarlo L,Solano E and Lamata L 2014 Sci. Rep. 4 7482 [11] Ivanov P A 2016 Phys. Rev. A 94 022330 [12] Ivanov P A, Singer K, Porras D and Vitanov N V 2015 Phys. Rev. Applied 4 054007 [13] Ivanov P A 2020 Phys. Scripta 95 025103 [14] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p. 135 [15] Wiseman H M and Milburn G J 2009 Quantum Measurement and Control (Cambridge: Cambridge University Press) p. 97 [16] Barnett S 2009 Quantum Information (Oxford: Oxford University Press) [17] Haroche S and Raimond J 2006 Exploring the Quantum: Atoms, Cavities and Photons (Oxford: Oxford University Press) p. 163 [18] Paris M G A 2012 Euro. Phys. J. Spec. Top. 203 61 [19] Wang Y Y and Fang M F 2020 Chin. Phys. B 29 030304 [20] Wang H, Qin Y, Ma J, Shen H, Hu Y and Jia X 2021 Chin. Phys. B 30 050301 [21] Kato T 2013 Perturbation theory for linear operators (New York: Springer Science & Business Media) [22] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455 [23] Heiss W D 2000 Phys. Rev. E 61 929 [24] Berry M V 2004 Czechoslovak Journal of Physics 54 1039 [25] Cao P C and Zhu X F 2021 Chin. Phys. B 30 030505 [26] Özdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 [27] Miri M A and Alú A 2019 Science 363 243 [28] Dembowski C, Grä H D, Harney H L, Heine A, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787 [29] Dembowski C, Dietz B, Harney H L, Heine A, Heiss W D,and Richter A 2004 Phys. Rev. E 69 056216 [30] Dietz B, Friedrich T, Metz J, Miski-Oglu M, Richter A,Schäfer F and Stafford C A 2007 Phys. Rev. E 75 027201 [31] Chen W, Özdemir S K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 [32] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W,Lee J H and An K 2009 Phys. Rev. Lett. 103 134101 [33] Zhu J, Özdemir Ş K, He L and Yang L 2010 Opt. Express 18 23535 [34] Peng B, Özdemi Ş K, Liertzer M, Chen W, Kramer J, Yilmaz H, Wiersig J, Rotter S and Yang L 2016 Proc. Natl. Acad. Sci. USA 113 6845 [35] Richter S, Zirnstein H G, Zúñiga-Pérez J, Krüger E, Deparis C, Treffich L, Sturm C, Rosenow B, Grundmann M,and Schmidt-Grund R 2019 Phys. Rev. Lett. 123 227401 [36] Choi Y, Kang S, Lim S, Kim W, Kim J R, Lee J H and An K 2010 Phys. Rev. Lett. 104 153601 [37] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 [38] Gao T, Estrecho E, Bliokh K Y, Liew T C, Fraser M D, Brobdeck S, Kamp M, Schneider C, HÖfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovkaya E A 2015 Nature 526 554 [39] Minganti F, Miranowicz A, Chhajlany R W and Nori F 2019 Phys. Rev. A 100 062131 [40] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [41] Šafránek D 2017 Phys. Rev. A 95 052320 [42] Zanardi P, Campos Venuti L and Giorda P 2007 Phys. Rev. A 76 062318 [43] Paraoanu G S and Scutaru H 1998 Phys. Rev. A 58 869 [44] Campos Venuti L and Zanardi P 1994 Phys. Rev. Lett. 99 095701 [45] Gu S J 2010 International Journal of Modern Physics B 24 4371 [46] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [47] Puebla R, Casanova J, Houhou O, Solano E and Paternostro M 2019 Phys. Rev. A 99 032303 [48] Hwang M J, Rab P, Hsu C W and Plenio M B 2018 Phys. Rev. A 97 013825 [49] Huang J H, Wu S and Lee C 2014 Annual Review of Cold Atoms and Molecules 7 365 [50] Paris M G A 2009 Inter. J. Quantum Inform. 07 125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|