Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010301    DOI: 10.1088/1674-1056/ac0bb2
GENERAL Prev   Next  

Protection of entanglement between two V-atoms in a multi-cavity coupling system

Wen-Jin Huang(黄文进)1, Mao-Fa Fang(方卯发)1,†, and Xiong Xu(许雄)2
1 Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China;
2 School of Physics and Electronics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract  The protection of the entanglement between two V-atoms (EBTVA) in a multi-cavity coupling system is studied. The whole system consists of two V-atoms. The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor (ECWHQF). The results show that, when there is no ECWHQF, the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning, while when there are different numbers n of ECWHQF coupled to two dissipative cavities, by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities, the EBTVA can be protected perfectly and continuously. Our result provides an effective method for protecting entanglement resources of three-level system.
Keywords:  V-atom      multi-cavity coupling system      entanglement      negativity  
Received:  03 March 2021      Revised:  07 June 2021      Accepted manuscript online:  16 June 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096).
Corresponding Authors:  Mao-Fa Fang     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄) Protection of entanglement between two V-atoms in a multi-cavity coupling system 2022 Chin. Phys. B 31 010301

[1] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[4] Zurek W H 2003 Rev. Mod. Phys. 75 715
[5] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[6] Huang J H and Zhu S Y 2007 Phys. Rev. A 76 062322
[7] Ficek Z and Tanas R2006 Phys. Rev. A 74 024304
[8] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[9] Weinstein Y S 2009 Phys. Rev. A 79 012318
[10] Amri M A, Li G X, Tan R and Zubairy M S 2009 Phys. Rev. A 80 022314
[11] Wu W and Lin H Q 2017 Phys. Rev. A 95 042132
[12] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[13] Man Z X, Xia Y J, Franco L and Rosario 2015 Sci. Rep. 5 13843
[14] Kaszlikowski D, Gnacinski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[15] Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H 2006 Phys. Rev. Lett. 96 090501
[16] Xu X and Fang M F 2020 Chin. Phys. B 29 57305
[17] Derkacz U and Jakóbczyk L 2006 Phys. Rev. A 74 032313
[18] Song W, Chen L and Zhu S L 2009 Phys. Rev. A 80 012331
[19] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 80 012104
[20] Bronn N T, Magesan E, Masluk N A, Chow J M, Gambetta Jay M and Steffen M 2015 IEEE-INST Electrical Electronics Engineers INC 5 25
[21] Vlastakis B, Petrenko A, Ofek N, Sun L, Leghtas Z, Sliwa Katrina, Liu Y H, Hatridge Michael, Blumoff J, Frunzio L, Mirrahimi M, Jiang L, Devoret M H and Schoelkopf R J 2015 Nat. Commun. 6 8970
[22] Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S and Wallraff A 2010 Phys. Rev. Lett. 104 100504
[23] Fink J M, Goeppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[24] Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstaetter B, Northup T E and Blatt R 2012 Nature 485 482
[25] Hettrich M, Ruster T, Kaufmann H, Roos C F, Schmiegelow C T, Schmidt-Kaler F and Poschinger U G 2015 Phys. Rev. Lett. 115 143003
[26] Takahashi H, Kassa E, Christoforou C and Keller M 2020 Phys. Rev. Lett. 124 013602
[27] McKay D C, Naik R, Reinhold P, Bishop L S and Schuster D I 2015 Phys. Rev. Lett. 114 080501
[28] Mok W K, You J B, Zhang W Z, Yang W L and Ching E P 2019 Phys. Rev. A 99 053847
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!