Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104301    DOI: 10.1088/1674-1056/abea98
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Repulsive bubble-bubble interaction in ultrasonic field

Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英)
Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  The bubble-bubble interaction (BBI) is attractive in most cases, but also could be repulsive. In the present study, three specific mechanisms of repulsive BBI are given. The great contribution to the repulsive BBI is derived from the large radius of the bubble catching the rebound point of the other bubble. For “elastic” bubble and “inelastic” bubble, with the increase of the phase shift between two bubbles, the BBI changes from attractive to repulsive, and the repulsion can be maintained. For both “elastic” bubbles, the BBI alternates between attractive interaction and repulsive interaction along the direction where the ambient radius of one of bubbles increases. For stimulating bubble and stimulated bubble, the BBI can be repulsive. Its property depends on the ambient radii of bubbles. In addition, the distribution of the radiation forces in ambient radius space shows that the BBI is sensitive to the size of bubble and is complex because the bubbles are not of the same size in an ultrasonic field. Finally, as the distance increases or decreases monotonically with time, the absolute value of the BBI decreases or increases, correspondingly. The BBI can oscillate not only in strength but also in polarity when the distance fluctuates with time.
Keywords:  bubble-bubble interaction      repulsion      phase shift  
Received:  14 January 2021      Revised:  10 February 2021      Accepted manuscript online:  01 March 2021
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574150 and 12074185).
Corresponding Authors:  Wei-Zhong Chen     E-mail:  wzchen@nju.edu.cn

Cite this article: 

Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英) Repulsive bubble-bubble interaction in ultrasonic field 2021 Chin. Phys. B 30 104301

[1] Bjerknes V F K 1906 Fields of Force(New York: Columbia University Press)
[2] Eller A 1968 J. Acoust. Soc. Am. 43 170
[3] Leighton T G, Walton A J and Pickworth M J W 1989 Eur. J. Phys. 11 47
[4] Blake F G 1949 J. Acoust. Soc. Am. 21 551
[5] Bjerknes V F K, Die Krafifelder and Vieweg und Sohn 1909 Braunschweig (Braunschweig: Vieweg und Sohn)
[6] Prosperetti A 1984 Ultrasonics 22 115
[7] Crum L A 1972 J. Acoust. Soc. Am. 52 294
[8] Crum L A 1975 J. Acoust. Soc. Am. 57 1363
[9] Ohl C D 1999 Phil. Trans. R. Soc. Lond. A 357 269
[10] Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Zhao G Y and Wang X 2020 Chin. Phys. B 29 034303
[11] Zhang P L, Lin S Y, Zhu H Z and Zhang T 2019 Acta Phys. Sin. 68 134301 (in Chinese)
[12] Cai C L, Yu J, Tu J, Guo X S, Huang P T and Zhang D 2018 Chin. Phys. B 27 084302
[13] Liang J F, Chen W Z, Shao W H and Qi S B 2012 Chin. Phys. Lett. 29 074701
[14] Nastaran R, Rasoul S B, Mona M and Homa E 2011 Chin. Phys. B 20 087804
[15] Cui W C, Chen W Z, Qi S B, Zhao C and Tu J 2012 J. Acoust. Soc. Am. 132 138
[16] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[17] Ma Y, Lin S Y, Xu J and TangY F 2017 Acta Phys. Sin. 66 034301 (in Chinese)
[18] Hao Y, Oguz H and Prosperetti A 2001 Phys. Fluids 13 1167
[19] Ida M 2003 Phys. Rev. E 67 056617
[20] Jiao J J, He Y, Kentish S E, Ashokkumar M, Manasseh R and Lee J 2015 Ultrasonics 58 35
[21] Khojasteh-Manesh M and Mahdi M 2019 J. Appl. Comput. Mech. 5 181
[22] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[23] Doinikov A A 2001 Phys. Rev. E 64 026301
[24] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[25] Oguz H N and Prosperetti A 1990 J. Fluid Mech. 218 143
[26] Harkin A, Kaper T J and Nadim A 2001 J. Acoust. Soc. Am. 445 377
[27] Soyama H, Yamauchi Y, Adachi Y, Sato K, Shindo T and Oba R 1995 JSME International Journal Series B Fluids and Thermal Engineering 38 245
[28] Zhao G Y, Chen W Z, Tao F, Zhang L L and Wu Y R 2020 J. Phys. A 127 244701
[29] Bai L X 2020 Ultrason. Sonochem. 66 105092
[30] Levich B V 1962 Physicochemical Hydrodynamics (Englewood Cliffs: Prentice-Hall)
[1] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[5] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[6] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[7] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[8] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[11] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[12] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[13] Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector
Xu Yan(闫旭), Miao Yu(于淼), Wen-Peng Han(韩文鹏), Ming-Hao You(犹明浩), Jun-Cheng Zhang(张君诚), Rui-Hua Dong(董瑞华), Hong-Di Zhang(张红娣), Yun-Ze Long(龙云泽). Chin. Phys. B, 2016, 25(7): 078106.
[14] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
[15] Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer
Su Xiao-Hang (苏晓航), Lei Qun-Li (雷群利), Ren Chun-Lai (任春来). Chin. Phys. B, 2015, 24(11): 113601.
No Suggested Reading articles found!