ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium |
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军)† |
International Research Center of Quantum Information and Photoelectric Information, School of Mechanical and Electronic Engineering, Chizhou University, Chizhou 247000, China |
|
|
Abstract We theoretically study the stationary entanglement of two charged nanomechanical oscillators coupling via Coulomb interaction in an optomechanical system with an additional Kerr medium. We show that the degree of entanglement between two nanomechanical oscillators is suppressed by Kerr interaction due to photon blockade and enhanced by Coulomb coupling strength. We also show other parameters for adjusting and obtaining entanglement, such as the driving power and the frequencies of the two oscillators, and the entanglement is robust against temperature. Our study proves a way for adjusting stationary entanglement between two optomechanical oscillators by Coulomb interaction and Kerr medium.
|
Received: 14 March 2021
Revised: 24 April 2021
Accepted manuscript online: 10 May 2021
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704051). |
Corresponding Authors:
Ye-Jun Xu
E-mail: yejunxu@126.com
|
Cite this article:
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军) Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium 2021 Chin. Phys. B 30 124201
|
[1] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96 [2] Wu Y L, Li S J, Ge W, Xu Z X, Tian L and Wang H 2015 Sci. Bull. 61 302 [3] Xu X X 2015 Phys. Rev. A 92 012318 [4] Yu Y B, Ji F M, Shi Z T, Wang H J, Zhao J W and Wang Y J 2017 Laser Phys. Lett. 14 035202 [5] Wang C, Shen W W, Mi S C, Zhang Y and Wang T J 2015 Sci. Bull. 60 2016 [6] Zhang X, Chen Y H, Wu Q C, Shi Z C, Song J and Xia Y 2017 Laser Phys. 27 015202 [7] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641 [8] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [9] Leggett A J 1980 Prog. Theor. Phys. 69 80 [10] Zurek W H 1991 Phys. Today 44 36 [11] Du S J, Peng Y G, Feng H R, Han F, Yang L W and Zheng Y J 2020 Chin. Phys. B 29 074202 [12] Kimble H J 2008 Nature 453 1023 [13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [14] Liu J H, Zhang Y B, Yu Y F and Zhang Z M 2019 Front. Phys. 14 12601 [15] Tan J and Fang M F 2006 Chin. Phys. 15 2514 [16] Li H M, Xu X X, Yuan H C and Meng X G 2019 Laser Phys. Lett. 16 105202 [17] Zhang G F, Yin W, Liang J Q and Yan Q W 2004 Chin. Phys. 13 988 [18] Yuan H C, Wang Z, Chen Q M and Dou X M 2015 Mod. Phys. Lett. A 30 1550109 [19] Liao Q H and He G Q 2020 Quantum Inf. Process 19 91 [20] Ke Z J, Wang Y T, Yu S, Liu W, Meng Y, Li Z P, Wang H, Li Q, Xu J S, Xiao Y, Tang J S, Li C F and Guo G C 2020 Chin. Phys. B 29 080301 [21] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B 29 060302 [22] Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 159903 [23] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [24] Zheng L L, Yin T S, Bin Q, Lü X Y and Wu Y 2019 Phys. Rev. A 99 013804 [25] Schwab K C and Roukes M L 2005 Phys. Today 58 36 [26] Kippenberg T J and Vahala K J 2008 Science 321 1172 [27] Marquardt F and Girvin S M 2009 Physics 2 40 [28] Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602 [29] Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621 [30] Xiong H, Gan J H and Wu Y 2017 Phys. Rev. Lett. 119 153901 [31] Teufel J D, Donner T, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nanotechnol. 4 820 [32] Wilson D J, Regal C A, Papp S B and Kimble H J 2009 Phys. Rev. Lett. 103 207204 [33] Liao Q H, Xiao X, Nie W J and Zhou N R 2020 Opt. Express 28 4 [34] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72 [35] Sohail A, Rana M, Ikram S, Munir T, Hussain T, Ahmed R and Yu C S 2020 Quantum Inf. Process 19 372 [36] Craddock A N, Hannegan J, Ornelas-Huerta D P, Siverns J D, Hachtel A J, Goldschmidt E A, Porto J V, Quraishi Q and Rolston S L 2019 Phys. Rev. Lett. 123 213601 [37] Zou F, Lai D G and Liao J Q 2020 Opt. Express 28 16175 [38] Liew T C H and Savona V 2010 Phys. Rev. Lett. 104 183601 [39] Lü X Y, Zhang W M, Sahel Ashhab, Wu Y and Franco Nori 2013 Sci. Rep. 3 2943 [40] Mikkelsen M, Fogarty T, Twamley J and Busch Th 2017 Phys. Rev. A 96 043832 [41] Wang K, Wu Q, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832 [42] Kumar T, Bhattacheriee A B and ManMohan 2010 Phys. Rev. A 81 013835 [43] Bin Q, Lü X Y, Bin S W and Wu Y 2018 Phys. Rev. A 98 043858 [44] Chen W J, Song D, Li Y, Wang X, Qin X L and Liu C Y 2019 Acta Phys. Sin. 68 094206 (in Chinese) [45] Zhang D, Zhang X P and Zheng Q 2013 Chin. Phys. B 22 064206 [46] Zhou L, Han Y, Jing J T and Zhang W P 2011 Phys. Rev. A 83 052117 [47] Zhang D and Zheng Q 2013 Chin. Phys. Lett. 30 024213 [48] Löw U, Emery V J and Fabricius K 1994 Phys. Rev. Lett. 72 1918 [49] Bohm D and Pines D 1953 Phys. Rev. 92 609 [50] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825 [51] Wu Q, Xiao Y and Zhang Z M 2016 Chin. Phys. B 25 014203 [52] Imamoglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467 [53] Mu Q X and Lin P Y 2020 Chin. Phys. B 29 060304 [54] Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055 [55] Zhang L W, Li X L and Yang L 2019 Acta Phys. Sin. 68 170701 [56] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804 [57] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204 [58] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [59] Plenio M B 2005 Phys. Rev. Lett. 95 090503 [60] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [61] Simon R 2000 Phys. Rev. Lett. 84 2726 [62] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 [63] Schliesser A, Riviere R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415 [64] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67 [65] Wang Z, Jiang C, He Y, Wang C Y and Li H M 2020 Nature 37 579 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|