Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 103101    DOI: 10.1088/1674-1056/abff42
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface

Yajing Zhang(张亚婧)1, Keke Song(宋可可)1, Shuo Cao(曹硕)2, Xiaodong Jian(建晓东)3, and Ping Qian(钱萍)1,†
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Mathematics and Physics, Bohai University, Jinzhou 121013, China;
3 National Supercomputer Center in Tianjin, Tianjin 300457, China
Abstract  Formaldehyde as an air pollutant to adverse health effects for humanity has been getting attention. The adsorption and dissociation of formaldehyde (HCHO) on the CoxCe1-xO2-δ (110) surface were investigated by the density functional theory (DFT) calculations. We calculated the oxygen vacancy formation energy as the function of its site around dopant Co in detail. The results showed that Co doping was accompanied by compensating oxygen hole spontaneous formation. The adsorption configurations and bindings of HCHO at different locations on the CoxCe1-xO2 (110) were presented. Four possible pathways of oxidation of formaldehyde on the catalytic surface were explored. The results suggested that formaldehyde dissociation at different adsorption sites on the doped CeO2 (110) – first forming dioxymethylene (CH2O2) intermediate, and then decomposing into H2O, H2, CO2, and CO molecules. It was found that the presence of cobalt and oxygen vacancy significantly prompted the surface activity of CeO2.
Keywords:  first-principles calculations      Co-doped ceria      oxygen vacancy formation energy      formaldehyde dissociation  
Received:  17 March 2021      Revised:  28 April 2021      Accepted manuscript online:  10 May 2021
PACS:  63.20.dk (First-principles theory)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  65.40.gp (Surface energy)  
  82.30.Lp (Decomposition reactions (pyrolysis, dissociation, and fragmentation))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0704300 and 2016YFB0700500). The work was carried out at the National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A). This work was supported by Guangdong Provincial Key Laboratory of Meta-RF Microwave and Xi'an Fengdong Yixiang Technology Service Co., Ltd.
Corresponding Authors:  Ping Qian     E-mail:  qianping@ustb.edu.cn

Cite this article: 

Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍) Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface 2021 Chin. Phys. B 30 103101

[1] Salthammer T, Mentese S and Marutzky R 2010 Chem. Rev. 110 2536
[2] Bai B, Qiao Q, Li J and Hao J 2016 Chinese J. Catal. 37 102
[3] Trovarelli A 1996 Catal. Rev.-Sci. Eng. 38 439
[4] Montini T, Melchionna M, Monai M and Fornasiero P 2016 Chem. Rev. 116 5987
[5] Aboukaïs A, Skaf M, Hany S, Cousin R, Aouad S, Labaki M and Abi-Aad E 2016 Mater. Chem. Phys. 177 570
[6] Li G and Li L 2015 RSC Adv. 5 36428
[7] Xu Q, Lei W, Li X, Qi X, Yu J, Liu G, Wang J and Zhang P 2014 Environ. Sci. Technol. 48 9702
[8] Piumetti M, Bensaid S, Russo N and Fino D 2016 Appl. Catal. B Environ. 180 271
[9] Luo D, Chen B, Li X, Liu Z, Liu X, Liu X, Shi C and Zhao X S 2018 J. Mater. Chem. A 6 7897
[10] Sciré S, Minicó S, Crisafulli C, Satriano C and Pistone A 2003 Appl. Catal. B Environ. 40 43
[11] Qi G, Yang R T and Chang R 2004 Appl. Catal. B Environ. 51 93
[12] Capdevila-Cortada M, Vilé G, Teschner D, Pérez-Ramírez J and López N 2016 Appl. Catal. B Environ. 197 299
[13] Li S, Wang N, Yue Y, Wang G, Zu Z and Zhang Y 2015 Chem. Sci. 6 2495
[14] Gennequin C, Lamallem M, Cousin R, Siffert S, Aïssi F and Aboukaïs A 2007 Catal. Today 122 301
[15] Luo J Y, Meng M, Li X, Li X G, Zha Y Q, Hu T D, Xie Y N and Zhang J 2008 J. Catal. 254 310
[16] Ma C, Wang D, Xue W, Dou B, Wang H and Hao Z 2011 Environ. Sci. Technol. 45 3628
[17] Liu B, Liu Y, Li C, Hu W, Jing P, Wang Q and Zhang J 2012 Appl. Catal. B Environ. 127 47
[18] Liu Y, Liu B, Wang Q, Li C, Hu W, Liu Y, Jing P, Zhao W and Zhang J 2012 J. Catal. 296 65
[19] Xu J, Lu G, Guo Y, Guo Y and Gong X Q 2017 Appl. Catal. A Gen. 535 1
[20] Xing L, Yang Y, Ren W, Zhao D, Tian Y, Ding T, Zhang J, Zheng L and Li X 2020 Catal. Today 351 83
[21] Dhakad M, Mitshuhashi T, Rayalu S, Doggali P, Bakardjiva S, Subrt J, Fino D, Haneda H and Labhsetwar N 2008 Catal. Today 132 188
[22] Saranya J, Ranjith K S, Saravanan P, Mangalaraj D and Rajendra Kumar R T 2014 Mater. Sci. Semicond. Process. 26 218
[23] Ranjith K S, Saravanan P, Chen S H, Dong C L, Chen C L, Chen S Y, Asokan K and Kumar R T R 2014 J. Phys. Chem. C 118 27039
[24] Wu H, Ma S, Song W and Hensen E J M 2016 J. Phys. Chem. C 120 13071
[25] Zhang Y, Xiao Y, Li L, Song K, Wang X, Wang C, Jian X, Ji C and Qian P 2020 Surf. Sci. 701 121693
[26] Bu Y, Chen Y, Jiang G, Hou X, Li S and Zhang Z 2020 Appl. Catal. B Environ. 260 118138
[27] Lu S, Chen C, Wang X, Wei S, Zhu Q, Huang F, Li K, Zhou X, He L, Liu Y and Pang F 2018 Catal. Surv. from Asia 22 63
[28] Nolan M, Grigoleit S, Sayle D C, Parker S C and Watson G W 2005 Surf. Sci. 576 217
[29] Mei D, Deskins N A, Dupuis M and Ge Q 2008 J. Phys. Chem. C 112 4257
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[33] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[34] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[35] Castleton C W M, Kullgren J and Hermansson K 2007 J. Chem. Phys. 127 244704
[36] Selcuk S and Selloni A 2015 J. Phys. Chem. C 119 9973
[37] Valente J S, Tzompantzi F and Prince J 2011 Appl. Catal. B Environ. 102 276
[38] Kümmerle E A and Heger G 1999 J. Solid State Chem. 147 485
[39] Cen W, Liu Y, Wu Z, Wang H and Weng X 2012 Phys. Chem. Chem. Phys. 14 5769
[40] Nolan M 2011 J. Phys. Chem. C 115 6671
[41] Righi G, Magri R and Sellon A 2019 J. Phys. Chem. C 123 9875
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!