Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 109401    DOI: 10.1088/1674-1056/abf556
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms

Zhen-Xia Zhang(张振霞)1,†, Ruo-Xian Zhou(周若贤)2, Man Hua(花漫)2, Xin-Qiao Li(李新乔)3, Bin-Bin Ni(倪彬彬)2, and Ju-Tao Yang(杨巨涛)4
1 National Institute of Natural Hazards, MEMC, Beijing 100085, China;
2 Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China
Abstract  During 2018 major geomagnetic storm, relativistic electron enhancements in extremely low L-shell regions (reaching L~3) have been reported based on observations of ZH-1 and Van Allen probes satellites, and the storm is highly likely to be accelerated by strong whistler-mode waves occurring near very low L-shell regions where the plasmapause was suppressed. It is very interesting to observe the intense chorus-accelerated electrons locating in such low L-shells and filling into the slot region. In this paper, we further perform numerical simulation by solving the two-dimensional Fokker-Planck equation based on the bounce-averaged diffusion rates. Numerical results demonstrate the evolution processes of the chorus-driven electron flux and confirm the flux enhancement in low pitch angle ranges (20°-50°) after the wave-particle interaction for tens of hours. The simulation result is consistent with the observation of potential butterfly pitch angle distributions of relativistic electrons from both ZH-1 and Van Allen probes.
Keywords:  chorus acceleration      extremely low L-shell      numerical simulation      ZH-1 satellite      Van Allen probes  
Received:  05 January 2021      Revised:  28 March 2021      Accepted manuscript online:  07 April 2021
PACS:  94.20.wj (Wave/particle interactions)  
  94.30.Xy (Radiation belts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41904149 and 12173038), Stable-Support Scientific Project of China Research Institute of Radiowave Propagation (Grant No. A132001W07), and the National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No. 2021-JBKY-11).
Corresponding Authors:  Zhen-Xia Zhang     E-mail:  zxzhang2018@163.com

Cite this article: 

Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛) Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms 2021 Chin. Phys. B 30 109401

[1] Lyons L R and Thorne R M 1973 J. Geophys. Res. 78 2142
[2] Meredith N P, Horne R B, Glauert S A, Baker D N, Kanekal S G and Albert J M 2009 J. Geophys. Res.114 A03222
[3] Ni B B, Bortnik J, Thorne R M, Ma Q and Chen L 2013 J. Geophys. Res. 118 7740
[4] Blake J B, Kolasinski W A, Fillius R W and Mullen E G 1992 Geophys. Res. Lett. 19 821
[5] Rodger C J, Clilverd M A, Green J C and Lam M M 2010 J. Geophys. Res.115 A04202
[6] Meredith N P, Horne R B, Lam M M, Denton M H, Borovsky J E and Green J C 2011 J. Geophys. Res.116 A05223
[7] Kavanagh A J, Cobbett N, and Kirsch P 2018 J. Geophys. Res. 123 7999
[8] Xiao F, Su Z, Zheng H and Wang S 2010 J. Geophys. Res.115 A05216
[9] Li W, Mourenas D, Artemyev A V, Bortnik J, Thorne R M, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Funsten H O and Spence H E 2016 Geophys. Res. Lett.43 8867
[10] Xiao F L, Chang Y, Su Z P, Zhou Q H, He Z G, He Y H, Baker D N, Spence H E, Funsten H O, Blake J B 2015 Nat. Commun. 6 8590
[11] Jin Y Y, Yang C, He Y H, Liu S, Zhou Q H and Xiao F L 2018 Sci. China: Tech. Sci. 61 212
[12] Sheeley B W, Moldwin M B, Rassoul H K, and Anderson R R 2001 J. Geophys. Res. 106 25631
[13] LeDocq M J, Gurnett D A and Hospodarsky G B 1999 Geophys. Res. Lett. 25 4063
[14] Santolík O, Parrot M and Lefeuvre F 2003 Radio Sci. 38 1010
[15] Li W, Ni B, Thorne R M, Bortnik J, Green J C, Kletzing C A, Kurth W S and Hospodarsky G B 2013 Geophys. Res. Lett. 40 4526
[16] Tao X, Zonca F and Chen L 2017 Geophys. Res. Lett. 44 3441
[17] Thorne R M 2013 Nature 504 411
[18] Bortnik J, Inan U S and Bell T F 2006 J. Geophys. Res. 111 A02205
[19] Chen Y, Reeves G D and Friedel R H W 2007 Nat. Phys. 3 614
[20] Liu S, Xiao F L, Yang C, He Y H, Zhou Q H, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Reeves G D, Funsten H O, Blake J B, Baker D N, and Wygant J R 2015 J. Geophys. Res. 120 938
[21] Liu S, Yan Q, Yang C, Zhou Q, He Z, He Y 2018 Geophys. Res. Lett. 45 1262
[22] Xiao F, Su Z, Zheng H, and Wang S 2009 J. Geophys. Res. 114 A03201
[23] Xiao F L, Yang C, He Z G, Su Z P, Zhou Q H, He Y H, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Reeves G D, Funsten H O, Blake J B, Baker D N and Wygant J R 2014 J. Geophys. Res. 119 3325
[24] Su Z, Zheng H and Wang S 2009 J. Geophys. Res. 114 A08202
[25] Zeren Z, Cao J, Liu W, Fu H, Yang J, Zhang X and Shen X 2013 Geophys. Res. Lett. 40 5827
[26] Fu H S 2014 J. Geophys. Res. 119 9089
[27] Zhang Z, Chen L, Liu S, Xiong Y, Li X, Wang Y 2020 Geophys. Res. Lett. 47 e2019GL086226
[28] Shen X H, Zhang X M, Yuan S G, Wang L W, Cao J B and Huang J P 2018 Sci. China: Tech. Sci. 61 634
[29] Li X Q, Xu Y B, An Z H, Liang X H, Wang P, Zhao X Y et al. 2019 Radiat. Detect. Technol. Methods 3 22
[30] Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G and Ukhorskiy A 2013 Space Sci. Rev. 179 3
[31] Baker D N, Kanekal S, Hoxie V, Batiste S, Bolton M, Li X et al. 2012 Space Sci. Rev. 179 337
[32] Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, Averkamp T and Tyler J 2013 Space Sci. Rev. 179 127
[33] Kim H J and Chan A A 1997 J. Geophys. Res. 102 22107
[34] Li X L, Barker A B, Baker D N, Tu W C, Sarris T E, Selesnick R S Friedel R and Shen C 2009 Space Weather 7 S02004
[35] Summers D 2005 J. Geophys. Res. 110 A08213
[36] Xiao F, Shen C, Wang Y, Zheng H and Wang S 2008 J. Geophys. Res. 113 A05203
[37] Ma Q, Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S and Hospodarsky G B 2016 J. Geophys. Res. 121 274
[38] Bortnik J and Thorne R M 2007 J. Atmosperic Solar-Terrestrial Phys. 69 378
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[14] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[15] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
No Suggested Reading articles found!