Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 055205    DOI: 10.1088/1674-1056/abd2a4

Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor

Meryem Grari1,?, CifAllah Zoheir1, Yasser Yousfi2, and Abdelhak Benbrik2
1 University Mohamed First, Department of Physics, LETSER Laboratory, Oujda, Morocco;
2 University Mohamed First, Department of Mathematics, LANO Laboratory, Oujda, Morocco
Abstract  The fluid model, also called the macroscopic model, is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges. By varying the parameters of the model, numerical simulation allows us to study several cases, providing us the physico-chemical information that is often difficult to obtain experimentally. In this work, using the fluid model, we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen. The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes. By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm, we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride (SiNxHy) films which is 0.7 Torr 2.7 cm.
Keywords:  fluid model      numerical simulation      SiNxHy      capacitively coupled plasma reactor  
Received:  01 October 2020      Revised:  18 November 2020      Accepted manuscript online:  11 December 2020
PACS:  52.65.-y (Plasma simulation)  
  52.77.-j (Plasma applications)  
  52.65.Ww (Hybrid methods)  
  52.30.-q (Plasma dynamics and flow)  
Corresponding Authors:  Meryem Grari     E-mail:

Cite this article: 

Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor 2021 Chin. Phys. B 30 055205

[1] Grari M and Zoheir C 2020 Int. J. Eng. 33 1449
[2] Grari M and Zoheir C 2021 Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy, ICEERE 2020, Springer, Singapore, p. 230
[3] Kim H J, Yang W and Joo J 2015 J. Appl. Phys. 118 043304
[4] Kim H J and Lee H J 2016 Plasma Sources Sci. Technol. 25 035006
[5] Bonilla R S, Reichel C, Hermle M and Wilshaw P R 2014 J. Appl. Phys. 115 144105
[6] Gritsenko V A 2009 Physics-Uspekhi 52 869
[7] Ferre R, Martín I, Ortega P, Vetter M, Torres I and Alcubilla R 2006 J. Appl. Phys. 100 073703
[8] Van Laar J H, Bissett H, Barry J C, Van der Walt I J and Crouse P L 2018 J. Eur. Ceram. Soc. 38 1197
[9] Qian M Y, Yang C Y, Chen X C, Ni G S, Liu S and Wang D Z 2015 Chin. Phys. Lett. 32 075202
[10] Yu M H 2019 Acta. Phys. Sin. 68 185202 (in Chinese)
[11] Liu C Y, Wu B, Qian J P, Li G Q, Hou Y W, Wei W, Chen M X, Lei M Z and Guo Y 2020 Chin. Phys. B 29 025202
[12] Kim H J and Lee H J 2017 Plasma Sources Sci. Technol. 26 085003
[13] Kim H C, Iza F, Yang S S, Radmilović-Radjenović M and Lee J K 2005 J. Phys. D: Appl. Phys. 38 R283
[14] Bavafa M, Ilati H and Rashidian B 2008 Semicond. Sci. Tech. 23 095023
[15] Lymberopoulos D P and Economou D J 1995 J. Res. Natl. Inst. Stan. 100 473
[16] Hao D X, Chen J, Ji L H and Sun Y C 2012 J. Semicond. 33 104004
[17] Rebiai S, Bahouh H and Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616
[18] Grari M and Zoheir C 2019 Materials Today: Proceedings. 13 888
[19] Boeuf J P and Pitchford L C 1995 Phys. Rev. E 51 1376
[20] Hayashi database 2016, retrieved on October 27, 2016
[21] Kim H J and Lee H J 2017 Plasma Sources Sci. Technol. 26 085003
[22] Lieberman M A and Lichtenberg A J 2005 Principles of plasma discharges and materials processing (John Wiley & Sons) p. 387
[23] Samir T, Liu Y, Zhao L L and Zhou Y W 2017 Chin. Phys. B 26 115201
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[10] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!