Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124208    DOI: 10.1088/1674-1056/ac0039

Asymmetric coherent rainbows induced by liquid convection

Tingting Shi(施婷婷)1,2, Xuan Qian(钱轩)1,2, Tianjiao Sun(孙天娇)1,3, Li Cheng(程力)1,2, Runjiang Dou(窦润江)1,4, Liyuan Liu(刘力源)1,4, and Yang Ji(姬扬)1,2,†
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Coherent rainbows can be formed by focusing white-light laser into liquids. They are bilaterally symmetric interference rings with various shapes. Such interference rings arise from the temperature distribution of the liquid induced by laser heating, i.e., thermal lens effect, which changes the refractive index locally and thus the optical path difference. The up-down asymmetry of the interference rings is caused by convection in the liquid. With the increase of the viscosity, the interference rings change their shape from oval to circular shape. After a shutter is opened and the laser shines into the liquid, the interference rings are circular at the beginning. As time goes on, they gradually turn into an oval shape. Let the liquid go a free-fall at the beginning, the interference rings remain circular. All the three experiments have confirmed that the asymmetric interference rings are due to convection in the liquid associated with thermal lens effect. We also numerically simulate the two-dimensional heat conduction with and without convection, whose results agree well with our experimental observations.
Keywords:  coherent interference      thermal lens effect      convection      numerical simulation  
Received:  13 April 2021      Revised:  07 May 2021      Accepted manuscript online:  12 May 2021
PACS:  42.25.-p (Wave optics)  
  42.25.Hz (Interference)  
  44.25.+f (Natural convection)  
  02.70.-c (Computational techniques; simulations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301202) and the National Natural Science Foundation of China (Grant Nos. 11674311 and U20A20205).
Corresponding Authors:  Yang Ji     E-mail:

Cite this article: 

Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬) Asymmetric coherent rainbows induced by liquid convection 2021 Chin. Phys. B 30 124208

[1] Sun T J, Shang Y X, Qian X and Ji Y 2018 Acta Phys. Sin. 67 034205 (in Chinese)
[2] Sun T J, Qian X, Shang Y X, Liu J, Wang K Y and Ji Y 2018 Sci. Bull. 63 531
[3] Sun T J, Qian X, Shang Y X, Liu J, Wang K Y and Ji Y 2018 Acta Phys. Sin. 67 184204 (in Chinese)
[4] Durbin S D, Arakelian S M and Shen Y R 1981 Opt. Lett. 6 411
[5] Calero L, Bajdecki W K and Meucci R 1999 Opt. Commun. 168 201
[6] Brugioni S and Meucci R 2002 Opt. Commun. 206 445
[7] He K X, Abeleldayem H, Sekhar P C, Venkateswarlu P and George M C 1991 Opt. Commun. 81 101
[8] Pilla V, Munin E and Gesualdi M R R 2009 J. Opt. A:Pure Appl. Opt. 11 105201
[9] Wu Y L, Zhu L L, Wu Q, Sun F, Wei J K, Tian Y C, Wang W L, Bai X D, Zuo X and Zhao J M 2016 Appl. Phys. Lett. 108 241110
[10] Wang W H, Wu Y L, Wu Q, Hua J J and Zhao J M 2016 Sci. Rep. 6 22072
[11] Wang X, Yan Y F, Cheng H, Wang Y H and Han J B 2018 Mater. Lett. 214 247
[12] Hu L L, Sun F, Zhao H and Zhao J M 2019 Opt. Lett. 44 5214
[13] Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Wang Y W, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y and He J 2018 Opt. Lett. 43 523
[14] Shi B X, Miao L L, Wang Q K, Du J, Tang P H, Liu J, Zhao C J and Wen S C 2015 Appl. Phys. Lett. 107 151101
[15] Jia Y, Liao Y L, Wu L M, Shan Y X, Dai X Y, Cai H Z, Xiang Y J and Fan D Y 2019 Nanoscale 11 4515
[16] Wang Y N, Tang Y J, Cheng P H, Zhou X F, Zhu Z, Liu Z P, Liu D, Wang Z M and Bao J M 2017 Nanoscale 9 3547
[17] Wu Y L, Wu Q, Sun F, Cheng C, Meng S and Zhao J M 2015 Proc. Natl. Acad. Sci. USA 112 11800
[18] Wu L M, Xie Z J, Zhao J L, Wang Y Z, Jiang X T, Ge Y Q, Zhang F, Lu S B, Guo Z N, Liu J, Xiang Y J, Xu S X, Li J Q, Fan D Y and Zhang H 2018 Adv. Opt. Mater. 6 1700985
[19] Zhang Q, Cheng X M, He B, Ren Z Y, Zhang Y, Chen H W and Bai J T 2018 Opt. Laser Technol. 102 140
[20] Yao J J, Cheng X M, Zhang Q, Tang X J, Chen H W and Bai J 2019 J. Phys. Chem. Lett. 10 6213
[21] Dou R J, Zhou H T, Liu L Y, Liu J and Wu N J 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, May 24-26, 2019, Chongqing, China, p. 1040
[22] Xing S M and Wang Y L 2000 Synthesis Process and Product Application of Organosilicon (Beijing:Chemical Industry Press) pp. 391-393
[23] Zhang H and Wan B H 1998 Phys. Exp. Coll. 11 1 (in Chinese)
[24] Shi M F 2003 Introduction to Modern Optics (Wuhan:Hubei Science and Technology Press) pp. 57-58
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[14] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[15] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
No Suggested Reading articles found!