Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014701    DOI: 10.1088/1674-1056/abb3f4

Numerical simulation on ionic wind in circular channels

Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉)†
School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Abstract  Ionic wind induced by direct-current corona discharge has attracted considerable interest because of its low energy consumption, low noise emission, flexible designs, and lack of moving parts. The purpose of this study is to investigate the configuration parameters to improve the velocity of the ionic wind. Accordingly, this study develops a three-dimensional (3D) model of circular tube with multi-needle-to-mesh electrode configurations, in this model, the influences of various parameters were explored,such as the mesh gap, the distribution of needle electrodes, the number of needle electrodes, and the radius of the circular channel. The numerical research results showed that the mesh gap, the distribution of needle electrodes, and the radius of the circular tube significantly affected the velocity of the ionic wind. When mesh gap is 12 mm, which indicates that there is an optimal mesh gap which can enhance the velocity of the ionic wind. What is more, changing the distribution of needle electrodes and increasing the number of needle electrodes can effectively improve the velocity of the ionic wind, the optimum distribution α of needle electrodes is 0.7-0.9, which greatly increase the velocity of the ionic wind. However, for multi-needle-to-mesh structure, the improvement of the radius of the circular channel is conducive to enhance the velocity and improve the velocity distribution.
Keywords:  corona discharge      ionic wind      numerical simulation      wind velocity  
Received:  08 July 2020      Revised:  12 August 2020      Accepted manuscript online:  01 September 2020
PACS:  47.11.Fg (Finite element methods)  
  47.85.L- (Flow control)  
  52.65.-y (Plasma simulation)  
  52.80.Hc (Glow; corona)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406000) and the National Natural Science Foundation of China (Grant No. 51676036).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉) Numerical simulation on ionic wind in circular channels 2021 Chin. Phys. B 30 014701

1 Johnson M J and Go D B 2018 Plasma Sources Science & Technology 27 059501
2 Park S, Cvelbar U, Choe W and Moon S Y 2018 Nat. Commun. 9 371
3 Robinson M 1961 Transactions of the American Institute of Electrical Engineers Part I: Communication and Electronics 80 143
4 Zhao P, Portugal S and Roy S J A P L 2015 Appl. Phys. Lett. 107 033501
5 Peng H and Ling X 2009 Heat and Mass Transfer 45 1575
6 Wang J, Cai Y X, Bao Y C, Wang J B and Li X H 2019 Int. J. Energy Res. 43 3746
7 Martynenko A, Astatkie T, Riaud N, Wells P and Kudra T 2017 Innovative Food Science & Emerging Technologies 43 18
8 Jung J S and Kim J G 2015 Journal of Electrostatics 78 55
9 Zhang J F, Kong L, Qu J, Wang S and Qu Z 2019 Energy 171 624
10 Zhang J F, Wang S, Zeng M J and Qu Z G 2019 Journal of Fluids Engineering-Transactions of the Asme 141 031105
11 Drew D S, Lambert N O, Schindler C B and Pister K S J 2018 IEEE Robotics and Automation Letters 3 2807
12 Sachs G, Traugott J, Nesterova A P, Dell'Omo G, Kummeth F, Heidrich W, Vyssotski A L and Bonadonna F 2012 Plos One 7 0041449
13 Xu H F, He Y O, Strobel K L, Gilmore C K, Kelley S P, Hennick C C, Sebastian T, Woolston M R, Perreault D J and Barrett S R H 2018 Nature 563 532
14 Rickard M, Dunn-Rankin D, Weinberg F and Carleton F 2005 Journal of Electrostatics 63 711
15 Tsubone H, Ueno J, Komeili B, Minami S, Harvel G D, Urashima K, Ching C Y and Chang J S 2008 Journal of Electrostatics 66 115
16 Moreau E and Touchard G 2008 Journal of Electrostatics 66 39
17 Fylladitakis E D, Moronis A X and Kiousis K 2014 Plasma Sci. Technol. 16 491
18 Huang R T, Sheu W J and Wang C C 2009 Energy Conversion and Management 50 1789
19 Lee S J, Li L, Kwon K, Kim W and Kim D 2015 Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 21 1465
20 Feng J, Wang C H, Liu Q M and Wu C L 2019 Int. J. Heat Mass Transfer 130 640
21 Jewell-Larsen N E, Karpov S V, Krichtafovitch I A, Jayanty V, Hsu C P and Mamishev A V2008 Proceedings ESA Annual Meeting on Electrostatics, June 17-19, 2008, Minneapolis, Minnesota, USA, pp. 17-19
22 Chen S, Zhu Y F, Tu J Y and Wang F 2019 J. Phys. D: Appl. Phys. 52 365203
23 Rickard M and Dunn-Rankin D 2007 Journal of Electrostatics 65 646
24 Peek, F. W1920 Dielectric phenomena in high voltage engineering (New York: McGraw-Hill Book Company)
25 Kaptsov N A1947 Elektricheskie Yavleniya v Gazakh i Vakuume(Moscow: OGIZ)
26 Chen S, Nobelen J and Nijdam S 2017 Plasma Sources Science & Technology 26 095005
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!