Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010505    DOI: 10.1088/1674-1056/abb30a
GENERAL Prev   Next  

Synchronization mechanism of clapping rhythms in mutual interacting individuals

Shi-Lan Su(苏世兰)1, Jing-Hua Xiao(肖井华)1, Wei-Qing Liu(刘维清)2,†, and Ye Wu(吴晔)3,4
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3 Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China; 4 School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
Abstract  In recent years, clapping synchronization between individuals has been widely studied as one of the typical synchronization phenomena. In this paper, we aim to reveal the synchronization mechanism of clapping interactions by observing two individuals' clapping rhythms in a series of experiments. We find that the two synchronizing clapping rhythm series exhibit long-range cross-correlations (LRCCs); that is, the interaction of clapping rhythms can be seen as a strong-anticipation process. Previous studies have demonstrated that the interactions in local timescales or global matching in statistical structures of fluctuation in long timescales can be sources of the strong-anticipation process. However, the origin of the strong anticipation process often appears elusive in many complex systems. Here, we find that the clapping synchronization process may result from the local interaction between two clapping individuals and may result from the more global coordination between two clapping individuals. We introduce two stochastic models for mutually interacting clapping individuals that generate the LRCCs and prove theoretically that the generation of clapping synchronization process needs to consider both local interaction and global matching. This study provides a statistical framework for studying the internal synchronization mechanism of other complex systems. Our theoretical model can also be applied to study the dynamics of other complex systems with the LRCCs, including finance, transportation, and climate.
Keywords:  synchronization mechanism      clapping rhythm      numerical simulation  
Received:  12 July 2020      Revised:  10 August 2020      Accepted manuscript online:  27 August 2020
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Tp (Time series analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11765008, 71731002, and 11775034) and the Jiangxi Provincial Natural Science Foundation, China (Grant No. 20202ACBL201004).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔) Synchronization mechanism of clapping rhythms in mutual interacting individuals 2021 Chin. Phys. B 30 010505

1 Néda Z, Ravasz E, Brechet Y, Vicsek T and Barabàsi A L Nature 403 849
2 Néda Z, Ravasz E, Vicsek T, Brechet Y and Barabàsi A L 2000 Phys. Rev. E 61 6987
3 Néda Z, Nikitin A and Vicsek T Physica A 321 238
4 Nikitin A, Néda Z and Vicsek T 2001 Phys. Rev. Lett. 87 024101
5 Horvàt S and Néda Z Physica D 256 43
6 Xenides D, Vlachos D S and Simos T E 2008 J. Stat. Mech.-Theory Exp. 2008 P07017
7 Li D, Liu K, Sun Y and Han M 2008 Sci. China Ser. F-Inf. Sci 51 449
8 Li D, Liu K, Sun Y and Han M IEEE Trans. Circuits Syst. II-Express Briefs 56 504
9 Mann R P, Faria J, Sumpter D J T and Krause J 2013 J. R. Soc. Interface 10 20130466
10 Thomson M, Murphy K and Lukeman R 2018 Sci. Rep. 8 808
11 Su S, Xiao J, Liu W and Wu Y 2020 Europhys. Lett. 129 60004
12 Dubois D M2003 Anticipatory Behavior in Adaptive Learning Systems (Vol. 2684)(Berlin, Heidelberg: Springer) pp. 110-132
13 Sivaprakasam S, Shahverdiev E M, Spencer P S and Shore K A 2001 Phys. Rev. Lett 87 154101
14 Toral R, Masoller C, Mirasso C R, Ciszak M and Calvo O 2003 Physica A 325 192
15 Podobnik B, Fu D F, Stanley H E and Ivanov P C 2007 Eur. Phys. J. B 56 47
16 Hennig H 2014 Proc. Natl. Acad. Sci. USA 111 12974
17 Podobnik B, Horvatic D, Petersen A M and Stanley H E 2009 Proc. Natl. Acad. Sci. USA 106 22079
18 Xu N, Shang P and Kamae S 2010 Nonlinear Dyn. 61 207
19 Vassoler R T and Zebende G F 2012 Physica A 391 2438
20 Deligni\`eres D and Marmelat V 2014 Physica A 394 47
21 Stephen D G and Dixon J A 2011 Chaos Solitons Fractals 44 160
22 Voss H U 2000 Phys. Rev. E 61 5115
23 Stephen D G, Stepp N, Dixon J A and Turvey M T 2008 Physica A 387 5271
24 Benoit C E, Bella S D, Farrugia N, Obrig H, Mainka S and Kotz S A 2014 Front. Hum. Neurosci. 8 494
25 Thaut M H, Miltner R, Lange H W, Hurt C P and Hoemberg V 2001 Mov. Disord. 14 808
26 Delignieres D, Ramdani S, Lemoine L, Torre K, Fortes M and Ninot G 2006 J. Math. Psychol. 50 525
27 Almurad Z M H, Roume C and Deligni\`eres D 2017 Hum. Mov. Sci. 54 125
28 Coey C A, Washburn A, Hassebrock J and Richardson M J 2016 Neurosci. Lett. 616 204
29 Roume C, Almurad Z M H, Scotti M, Ezzina S, Blain H and Deligni\`eres D 2018 Physica A 503 1131
30 Torre K and Deligni\`eres D 2008 Biol. Cybern. 99 159
31 Deligni\`eres D and Marmelat V2013 Progress in Motor Control. Advances in Experimental Medicine and Biology(New York: Springer) pp. 127-148
32 Diniz A, Wijnants M L, Torre K, Barreiros J, Crato N, Bosman A M T, Hasselman F, Cox R F A, Orden G C V and Deligni\`eres D 2011 Hum. Mov. Sci. 30 889
33 Peng C K, Havlin S, Stanley H E and Goldberger A L 1995 Chaos 5 82
34 Havlin S, Amaral L A N, Ashkenazy Y, Goldberger A L, Ivanov P C, Peng C K and Stanley H E 1999 Physica A 274 99
35 Mates J 1994 Biol. Cybern 70 463
36 Jiong R and Zheng S Y 2010 Chin. Phys. B 19 070513
37 He D, Shi P and Stone L 2003 Phys. Rev. E 67 027201
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!