Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084701    DOI: 10.1088/1674-1056/ac0a6c

Evolution of melt convection in a liquid metal driven by a pulsed electric current

Yanyi Xu(徐燕祎)1, Yunhu Zhang(张云虎)1,†, Tianqing Zheng(郑天晴)1, Yongyong Gong(龚永勇)1,2, Changjiang Song(宋长江)1, Hongxing Zheng(郑红星)1, and Qijie Zhai(翟启杰)1
1 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200072, China;
2 College of Science, Shanghai University, Shanghai 200444, China
Abstract  Gain refinement in metal alloy can be achieved by applying an electric current pulse (ECP) in solidification process. Forced flow inside the melt has been proved to be a key role in grain refinement. In this paper, the fluid flow inside Ga 20 wt%-In 12 wt%-Sn alloy induced by a damping sinusoidal ECP flowing through two parallel electrodes into the cylindrical melt was investigated by both experimental measurements and numerical simulations. Experimental results showed that a strong descending jet was induced beneath the bottom of electrodes under the application of ECP. Besides, it was found that flow intensity increases with the increase of amplitude, frequency, and pulse width, respectively. In order to unlock the formation mechanism of flow pattern and the relevance of flow intensity varied with electrical parameters, a three-dimensional numerical model under the application of ECP was established. Meanwhile, a comparative study was conducted by numerical simulations to reveal the distributions of electromagnetic fields and forced flow. Numerical results showed that the downward Lorentz force induced by ECP was concentrated beneath the bottom of electrodes. This downward Lorentz force induces a descending jet and provokes a global forced flow. According to numerical simulations, the evolution of flow intensity with electrical parameters under the application of ECP can be understood by the time averaged impulse of Lorentz force.
Keywords:  pulsed electric current      flow measurement      numerical simulation      magnetohydrodynamics  
Received:  27 April 2021      Revised:  09 June 2021      Accepted manuscript online:  11 June 2021
PACS:  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.80.Cb (Velocity measurements)  
  47.27.em (Eddy-viscosity closures; Reynolds stress modeling)  
  47.11.Fg (Finite element methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1760204, 51974183, 52071194, and 52074180).
Corresponding Authors:  Yunhu Zhang     E-mail:

Cite this article: 

Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰) Evolution of melt convection in a liquid metal driven by a pulsed electric current 2021 Chin. Phys. B 30 084701

[1] Mohanty P S and Gruzleski J E 1995 Acta Metall. Mater. 43 2001
[2] Zhang Y H, Ye C Y, Shen Y P, Chang W, StJohn D H, Wang G and Zhai Q J 2020 J. Alloys Compd. 812 152022
[3] Liu T Y, Sun J, Sheng C, Wang Q X, Zhang Y H, Li L J, Zhong H G and Zhai Q J 2017 Adv. Manuf. 5 143
[4] Nagasivamuni B, Wang G, StJohn D H and Dargusch M S 2018 J. Cryst. Growth 495 20
[5] Srivastava N, Chaudhari G P and Qian M 2017 J. Mater. Process. Technol. 249 367
[6] Khmeleva M G, Zhukov I A, Garkushin G V, Savinykh A S, Khrustalyov A P and Vorozhtsov A B 2020 JOM 72 3787
[7] Yoshitake Y, Yamamoto K, Sasaguri N and Era H 2018 Int. J. Metalcast. 133 553
[8] Yang Y, Song B, Cheng J, Song G Y, Yang Z B and Cai Z Y 2018 ISIJ Int. 58 98
[9] Räbiger D, Zhang Y H, Galindo V, Franke S, Willers B and Eckert S 2014 Acta Mater. 79 327
[10] Franke S, Räbiger D, Galindo V, Zhang Y H and Eckert S 2016 Flow Meas. Instrum. 48 64
[11] Liao X L, Zhai Q J, Luo J, Chen W J and Gong Y Y 2007 Acta Mater. 55 3103
[12] Zhang L M, Liu H N, Li N, Wang J, Zhang R, Xing H and Song K K 2016 J. Mater. Res. 313 396
[13] Li N, Zhang R, Zhang L M, Xing H, Yin P F and Wu Y Y 2017 Acta. Metall. Sin. 532 192
[14] Vives C 1996 Metall. Mater. Trans. B 27 445
[15] Zuo Y B, Liu X D, Sun C, Yuan S S, Mou D, Li Z Z and Cui J Z 2015 China Foundry 12 333
[16] Willers B, Eckert S, Nikrityuk P A, Räbiger D, Dong J, Eckert K and Gerbeth G 2008 Metall. Mater. Trans. B 39 304
[17] Metan V, Eigenfeld K, Raebiger D, Leonhardt M and Eckert S 2009 J. Alloys Compd. 487 163
[18] Gong Y Y, Luo J, Jing J X, Xia Z Q and Zhai Q J 2008 Mater. Sci. Eng. A 497 147
[19] Li L, Liang W L, Ban C Y, Suo Y S, Lv G C, Liu T, Wang X J, Zhang H and Cui J Z 2020 Mater. Charact. 163 110274
[20] Zhang K L, Li Y J and Yang Y S 2020 J. Mater. Sci. Technol. 48 9
[21] Nakada M, Shiohara Y and Flemings M C 1990 ISIJ Int. 30 27
[22] Gao M, He G H, Yang F, Guo J D, Yuan Z X and Zhou B L 2002 Mater. Sci. Eng. A 337 110
[23] Chen H, Sun X, Xing Z H, Zhao G Y, Tao J Q, Li M and Xue H S 2019 Special casting and nonferrous alloys 39 1169 (in Chinese)
[24] Zhang Y H, Cheng X R, Zhong H G, Xu Z S, Li L J, Gong Y Y, Miao X C, Song C J and Zhai Q J 2016 Metals 6 170
[25] He X Y, Sun Q Z, Wang L, Peng Q, Song C J, Zheng H X and Zhai Q J 2013 Ironmaking Steelmaking 38 374
[26] Qin R S, Yan H C, He G H and Zhou B L 1995 Chin. J. Mater. Res. 93 219 (in Chinese)
[27] Qin R S and Zhou B L 1995 Chin. J. Mater. Res. 111 69 (in Chinese)
[28] Xiang S Q, Ma R and Zhang X F 2020 J. Alloys Compd. 845 156083
[29] Qin S Y, Ba X, Yan L and Zhang X F 2021 J. Nucl. Mater. 554 153103
[30] Qin S Y, Hao J Q, Yan L and Zhang X F 2021 Scr. Mater. 199 113879
[31] Wang J Z, Cang D Q, Tan Y, Xue Q G, Wang J S, Chang G W, Cao L Y, Zhou D Q and Cao B G 1999 Foundry 6 (in Chinese)
[32] Yin J F, You Y X, Li W and Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese)
[33] Zi L D, Mei M S and Cheng Y 2020 Chin. Phys. B 29 034703
[34] Zhang Y H, Xu Y Y, Ye C Y, Sheng C, Sun J, Wang G, Miao X C, Song C J and Zhai Q J 2018 Sci. Rep. 8 3242
[35] Davidson P A 2006 An Introduction to magnetohydrodynamics (Cambridge: Cambridge University Press) pp. 33-34
[36] Asai S 2012 Electromagnetic processing of materials (Berlin: Springer) pp. 50-52
[37] Hunt J C R 2006 J. Fluid Mech. 574 826
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[4] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[9] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[10] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[11] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[12] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[13] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
No Suggested Reading articles found!