Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017803    DOI: 10.1088/1674-1056/abaee6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of several ternary nanostructures

Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路)†, Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  To investigate the optical properties of the ternary nanostructures, the nanodisk, core-shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation (DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO2 and two noble metals (Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO2 and a semiconductor (PbSe, Ge, MoS2, CdSe, CdS or TiO2). Especially, TiO2/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO2/Ag/Pt and TiO2/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range.
Keywords:  optical properties of nanostructures      plasmons on surfaces and interfaces      model and numerical simulation  
Received:  10 June 2020      Revised:  05 August 2020      Accepted manuscript online:  13 August 2020
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774248 and 11974253).
Corresponding Authors:  Corresponding author. E-mail: chengxl@scu.edu.cn   

Cite this article: 

Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东) Optical properties of several ternary nanostructures 2021 Chin. Phys. B 30 017803

1 Zhou N, Lòpez-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I and Xu Q H 2015 Rsc Adv. 5 29076
2 Qu Y Q and Duan X F 2013 Chem. Soc. Rev. 42 2568
3 Li J T and Wu N Q 2015 Catal. Sci. Technol. 5 1360
4 Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
5 Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z and Zhu J Y 2020 IEEE Access 8 85154
6 Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi Y G 2020 Sol. Energ. Mater. Sol. Cells 211 110535
7 Mohan S, Prakash R M and Do T O 2019 Catalysts 9 680
8 Fujishima A and Honda K 1972 Nature 238 37
9 Sangpour P, Hashemi F and Moshfegh A Z 2010 J. Phys. Chem. C 114 13955
10 Xiao F X 2012 J. Phys. Chem. C 116 16487
11 Subramanian V, Wolf E E and Kamat P V 2003 Langmuir 19 469
12 Fei J B and Li J B 2015 Adv. Mater. 27 314
13 Carvalho H W, Batista A P, Hammer P and Ramalho T C 2010 J. Hazard. Mater. 184 273
14 Drew K, Girishkumar G, Vinodgopal K and Kamat P V 2005 J. Phys. Chem. B 109 11851
15 Liang H Y, Li Z P, Wang W Z, Wu W Y S and Xu H X 2009 Adv. Mater. 21 4614
16 Xu H X and Käll M 2002 Phys. Rev. Lett. 89 246802
17 Tabakova T, Idakiev V, Andreeva D and Mitov I 2000 Appl. Cataly. A-Gen. 202 91
18 Tom R T, Nair A S, Singh N, Aslam M, Nagendra C, Philip R, Vijayamohanan K and Pradeep T 2003 Langmuir 19 3439
19 Xu Z C, Hou Y L and Sun S H 2014 J. Am. Chem. Soc. 129 8698
20 Fageria P, Gangopadhyay S and Pande S 2014 Rsc Adv. 4 24962
21 Tao, Gang, Xing S X, Wu T and Chen H Y 2010 Chem. Mater. 22 3826
22 Wang M and Li Z Y 2008 Sensor. Actuat. B-Chem. 133 607
23 Haugen A B, Kumakiri I, Simon C and Einarsrud M A 2011 J. Eur. Ceram. Soc. 31 291
24 Seh Z W, Liu S H, Michelle L, Zhang S Y and Liu Z L 2012 Adv. Mater. 24 2310
25 Wang H, You T T, Shi W W, Li J H and Guo L 2012 J. Phys. Chem. C 116 6490
26 Li X Z and Li F B 2001 Environ. Sci. Technol. 35 2381
27 Xiong Z W and Cao L H 2019 J. Alloys Compd. 773 828
28 Xiong Z W and Cao L H 2019 J. Alloys Compd. 785 200
29 Ma Y W, Wu Z W, Zhang L H, Liu W F and Zhang J 2015 Chin. Phys. Lett. 32 094202
30 Tada H, Mitsui T, Kiyonaga T, Akita T and Tanaka K 2006 Nat. Mater. 5 782
31 Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J and Duan H G 2019 Acta. Phys. Sin. 68 147304 (in Chinese)
32 Walther A and Mueller A 2008 Soft Matter 4 663
33 Mie G 1908 Ann. Phys.-Berlin 330 377
34 Draine B T 1988 Astrophys. J. 333 848
35 Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
36 Draine B T and Flatau P J arXiv preprint arXiv:1305.6497
37 Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269
38 Draine B T and Flatau P J 2008 J. Opt. Soc. Am. A 25 2693
39 Li Y, Zhu Y H, Wang M Y, Deng H H and Yin H H 2019 Chin. Phys. B 28 097801
40 Maier S A2007 Plasmonics: fundamentals and applications (New York: Springer) p. 122
41 Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G and Wu P H 2020 Renew. Energ. 158 227
42 Zhao F, Chen X F, Yi Z, Qin F, Tang Y J, Yao W T, Zhou Z G and Yi Y G 2020 Sol. Energy 204 635
43 Li J H, Bing D, Wu Z T, Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802
44 Wang M G, Cui Z X, Yang M, Lin L J, Chen X C, Wang M and Han J 2019 J. Colloid Interf. Sci. 544 1
45 Shubha J P and Jayalakshmi N 2019 Curr. Nanomater. 05 36
46 Linsebigler A L, Lu G Q and Yates J T 1995 Chem. Rev 95 735
47 Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohl\'ídal I, Szeghalmi A, Kley E B and Tünnermann A 2016 Adv. Opt. Mater. 4 1780
48 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
49 Suzuki N, Sawa Ki and Adachi S 1995 J. Appl. Phys. 77 1249
50 Aspnes D E and Studna A 1983 Phys. Rev. B 27 985
51 Beal A and Hughes H 1979 J. Phys. C: Solid State Phys. 12 881
52 Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 4681
53 Treharne R, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S and Lane D 2011 J. Phys.: Conf. Ser., 14-16 December 2010, University of Warwick, UK, p. 012038
54 Zhang X, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401
55 Henisch H K 1956 J. Electrochem. Soc. 103 637
56 Wolf H F1971 Semiconductors(New York: Wiley) pp. 251-253
57 Yi Z, Li X, Xu X B, Chen X F, Ye X, Yi Y, Duan T, Tang Y J, Liu J W and Yi Y G 2018 Nanomaterials 8 568
58 Li W L, Li B R, Meng M J, Cui Y H, Y Wu Y, Zhang Y, Dong H and Feng Y 2019 Appl. Surf. Sci. 487
59 Scarisoreanu M, Ilie A, Goncearenco E, Banici A, Morjan I, Dutu E, Tanas\va E, Fort I, Stan M, Mihailescu C and Fleaca C 2019 Appl. Surf. Sci. 509 145217
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[3] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[4] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[12] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[13] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!