CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical properties of several ternary nanostructures |
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路)†, Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东) |
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract To investigate the optical properties of the ternary nanostructures, the nanodisk, core-shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation (DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO2 and two noble metals (Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO2 and a semiconductor (PbSe, Ge, MoS2, CdSe, CdS or TiO2). Especially, TiO2/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO2/Ag/Pt and TiO2/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range.
|
Received: 10 June 2020
Revised: 05 August 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774248 and 11974253). |
Corresponding Authors:
†Corresponding author. E-mail: chengxl@scu.edu.cn
|
Cite this article:
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东) Optical properties of several ternary nanostructures 2021 Chin. Phys. B 30 017803
|
1 Zhou N, Lòpez-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I and Xu Q H 2015 Rsc Adv. 5 29076 2 Qu Y Q and Duan X F 2013 Chem. Soc. Rev. 42 2568 3 Li J T and Wu N Q 2015 Catal. Sci. Technol. 5 1360 4 Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69 5 Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z and Zhu J Y 2020 IEEE Access 8 85154 6 Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi Y G 2020 Sol. Energ. Mater. Sol. Cells 211 110535 7 Mohan S, Prakash R M and Do T O 2019 Catalysts 9 680 8 Fujishima A and Honda K 1972 Nature 238 37 9 Sangpour P, Hashemi F and Moshfegh A Z 2010 J. Phys. Chem. C 114 13955 10 Xiao F X 2012 J. Phys. Chem. C 116 16487 11 Subramanian V, Wolf E E and Kamat P V 2003 Langmuir 19 469 12 Fei J B and Li J B 2015 Adv. Mater. 27 314 13 Carvalho H W, Batista A P, Hammer P and Ramalho T C 2010 J. Hazard. Mater. 184 273 14 Drew K, Girishkumar G, Vinodgopal K and Kamat P V 2005 J. Phys. Chem. B 109 11851 15 Liang H Y, Li Z P, Wang W Z, Wu W Y S and Xu H X 2009 Adv. Mater. 21 4614 16 Xu H X and Käll M 2002 Phys. Rev. Lett. 89 246802 17 Tabakova T, Idakiev V, Andreeva D and Mitov I 2000 Appl. Cataly. A-Gen. 202 91 18 Tom R T, Nair A S, Singh N, Aslam M, Nagendra C, Philip R, Vijayamohanan K and Pradeep T 2003 Langmuir 19 3439 19 Xu Z C, Hou Y L and Sun S H 2014 J. Am. Chem. Soc. 129 8698 20 Fageria P, Gangopadhyay S and Pande S 2014 Rsc Adv. 4 24962 21 Tao, Gang, Xing S X, Wu T and Chen H Y 2010 Chem. Mater. 22 3826 22 Wang M and Li Z Y 2008 Sensor. Actuat. B-Chem. 133 607 23 Haugen A B, Kumakiri I, Simon C and Einarsrud M A 2011 J. Eur. Ceram. Soc. 31 291 24 Seh Z W, Liu S H, Michelle L, Zhang S Y and Liu Z L 2012 Adv. Mater. 24 2310 25 Wang H, You T T, Shi W W, Li J H and Guo L 2012 J. Phys. Chem. C 116 6490 26 Li X Z and Li F B 2001 Environ. Sci. Technol. 35 2381 27 Xiong Z W and Cao L H 2019 J. Alloys Compd. 773 828 28 Xiong Z W and Cao L H 2019 J. Alloys Compd. 785 200 29 Ma Y W, Wu Z W, Zhang L H, Liu W F and Zhang J 2015 Chin. Phys. Lett. 32 094202 30 Tada H, Mitsui T, Kiyonaga T, Akita T and Tanaka K 2006 Nat. Mater. 5 782 31 Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J and Duan H G 2019 Acta. Phys. Sin. 68 147304 (in Chinese) 32 Walther A and Mueller A 2008 Soft Matter 4 663 33 Mie G 1908 Ann. Phys.-Berlin 330 377 34 Draine B T 1988 Astrophys. J. 333 848 35 Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491 36 Draine B T and Flatau P J arXiv preprint arXiv:1305.6497 37 Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269 38 Draine B T and Flatau P J 2008 J. Opt. Soc. Am. A 25 2693 39 Li Y, Zhu Y H, Wang M Y, Deng H H and Yin H H 2019 Chin. Phys. B 28 097801 40 Maier S A2007 Plasmonics: fundamentals and applications (New York: Springer) p. 122 41 Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G and Wu P H 2020 Renew. Energ. 158 227 42 Zhao F, Chen X F, Yi Z, Qin F, Tang Y J, Yao W T, Zhou Z G and Yi Y G 2020 Sol. Energy 204 635 43 Li J H, Bing D, Wu Z T, Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802 44 Wang M G, Cui Z X, Yang M, Lin L J, Chen X C, Wang M and Han J 2019 J. Colloid Interf. Sci. 544 1 45 Shubha J P and Jayalakshmi N 2019 Curr. Nanomater. 05 36 46 Linsebigler A L, Lu G Q and Yates J T 1995 Chem. Rev 95 735 47 Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohl\'ídal I, Szeghalmi A, Kley E B and Tünnermann A 2016 Adv. Opt. Mater. 4 1780 48 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 49 Suzuki N, Sawa Ki and Adachi S 1995 J. Appl. Phys. 77 1249 50 Aspnes D E and Studna A 1983 Phys. Rev. B 27 985 51 Beal A and Hughes H 1979 J. Phys. C: Solid State Phys. 12 881 52 Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 4681 53 Treharne R, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S and Lane D 2011 J. Phys.: Conf. Ser., 14-16 December 2010, University of Warwick, UK, p. 012038 54 Zhang X, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401 55 Henisch H K 1956 J. Electrochem. Soc. 103 637 56 Wolf H F1971 Semiconductors(New York: Wiley) pp. 251-253 57 Yi Z, Li X, Xu X B, Chen X F, Ye X, Yi Y, Duan T, Tang Y J, Liu J W and Yi Y G 2018 Nanomaterials 8 568 58 Li W L, Li B R, Meng M J, Cui Y H, Y Wu Y, Zhang Y, Dong H and Feng Y 2019 Appl. Surf. Sci. 487 59 Scarisoreanu M, Ilie A, Goncearenco E, Banici A, Morjan I, Dutu E, Tanas\va E, Fort I, Stan M, Mihailescu C and Fleaca C 2019 Appl. Surf. Sci. 509 145217 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|