Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 109501    DOI: 10.1088/1674-1056/ac1e0c
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Holographic heat engine efficiency of hyperbolic charged black holes

Wei Sun(孙威) and Xian-Hui Ge(葛先辉)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We consider a four-dimensional charged hyperbolic black hole as working matter to establish a black hole holographic heat engine, and use the rectangular cycle to obtain the heat engine efficiency. We find that when the increasing of entropy is zero, the heat engine efficiency of the hyperbolic black hole becomes the well-known Carnot efficiency. We also find that less charge corresponds to higher efficiency in the case of $\tilde{q}>0$. Furthermore, we study the efficiency of the flat case and spherical case and compare the efficiency with that of the hyperbolic charged black holes. Finally, we use numerical simulation to study the efficiency in benchmark scheme.
Keywords:  holographic heat engines      benchmark cycle      hyperbolic charged black holes  
Received:  20 May 2021      Revised:  24 July 2021      Accepted manuscript online:  20 August 2021
PACS:  95.30.Tg (Thermodynamic processes, conduction, convection, equations of state)  
  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875184).
Corresponding Authors:  Xian-Hui Ge     E-mail:  gexh@shu.edu.cn

Cite this article: 

Wei Sun(孙威) and Xian-Hui Ge(葛先辉) Holographic heat engine efficiency of hyperbolic charged black holes 2021 Chin. Phys. B 30 109501

[1] Kastor D, Ray S and Traschen J 2009 Classical and Quantum Gravity 26 195011
[2] Kastor D, Ray S and Traschen J 2010 Classical and Quantum Gravity 27 235014
[3] Kubizňák D and Mann R 2012 Journal of High Energy Physics 2012 1
[4] Kubizňák D and Mann R 2014 Canadian Journal of Physics 93 999
[5] Kubizňák D, Mann R and Teo M 2016 Classical and Quantum Gravity 34 063001
[6] Sun W and Ge X H 2019 arXiv: 1912.00153 [hep-th]
[7] Johnson C 2020 Classical and Quantum Gravity 37 034001
[8] Johnson C 2016 Entropy 18 120
[9] Jafarzade K and Sadeghi J 2015 Int. J. Theor. Phys. 56 3387
[10] Setare M and Adami H 2015 Phys. Rev. D 91 084014
[11] Johnson C 2016 Classical and Quantum Gravity 33 135001
[12] Zhang M and Liu W 2016 Int. J. Theor. Phys. 55 5136
[13] Johnson C 2015 Classical and Quantum Gravity 33 215009
[14] Liu Y 2017 Nucl. Phys. 946 114700
[15] Mo J X and Li G Q 2017 Journal of High Energy Physics 2018 1
[16] Hendi S H, Panah B E, Panahiyan S, Liu H and Meng X H 2018 Phys. Lett. B 781 40
[17] Xu H, Sun Y and Zhao L 2017 General Relativity and Quantum Cosmology
[18] Mo J X, Liang F and Li G Q 2017 Journal of High Energy Physics 2017 1
[19] Hennigar R A, McCarthy F, Ballon A and Mann R 2017 Classical and Quantum Gravity 34 175005
[20] Zhang J, Li Y and Yu H 2018 Eur. Phys. J. C 78 1
[21] Fang L Q and Kuang X M 2017 Sci. China-Phys. Mech. Astron. 61 080421
[22] Hu S Q and Kuang X M 2018 Sci. China-Phys. Mech. Astron. 62 060411
[23] Cai R and Wang A 2004 Phys. Rev. D 70 064013
[24] Caldarelli M and Klemm D 1999 Nucl. Phys. 545 434
[25] Chakraborty A and Johnson C 2018 Int. J. Mod. Phys. D 27 1950012
[26] Chakraborty A and Johnson C 2018 Int. J. Mod. Phys. 27 1950012
[27] Ahmed W, Chen H Z, Gesteau E, Gregory R and Scoins A 2019 Classical and Quantum Gravity 36 214001
[1] Applicability of minimum entropy generation methodto optimizing thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(1): 010508.
[2] Effect of pressure grads on convection in inner core of type II supernova
Luo Zhi-Quan(罗志全) and Liu Men-Quan(刘门全). Chin. Phys. B, 2008, 17(10): 3917-3921.
[3] Calculation of plasma characteristics of the sun
Muhammad Abbas Bari(穆汗默德阿巴斯巴瑞), Zhong Jia-Yong(钟佳勇), Chen Min(陈民), Zhao Jing(赵静), and Zhang Jie(张杰). Chin. Phys. B, 2006, 15(11): 2578-2582.
[4] First quantum correction to entropy of Vaidya-Bonner black holes due to arbitrary spin fields
Gao Chang-Jun (高长军), Shen You-Gen (沈有根). Chin. Phys. B, 2002, 11(9): 890-893.
No Suggested Reading articles found!