Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094701    DOI: 10.1088/1674-1056/ac0781
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of Prandtl number in two-dimensional turbulent convection

Jian-Chao He(何建超)1, Ming-Wei Fang(方明卫)1, Zhen-Yuan Gao(高振源)2,3, Shi-Di Huang(黄仕迪)2,3, and Yun Bao(包芸)1,†
1 School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China;
2 Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
3 Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  We report a numerical study of the Prandtl-number (Pr) effects in two-dimensional turbulent Rayleigh-Bénard convection. The simulations were conducted in a square box over the Pr range from 0.25 to 100 and over the Rayleigh number (Ra) range from 107 to 1010. We find that both the strength and the stability of the large-scale flow decrease with the increasing of Pr, and the flow pattern becomes plume-dominated at high Pr. The evolution in flow pattern is quantified by the Reynolds number (Re), with the Ra and the Pr scaling exponents varying from 0.54 to 0.67 and -0.87 to -0.93, respectively. It is further found that the non-dimensional heat flux at small Ra diverges strongly for different Pr, but their difference becomes marginal as Ra increases. For the thermal boundary layer, the spatially averaged thicknesses for all the Pr numbers can be described by δθRa-0.30 approximately, but the local values vary a lot for different Pr, which become more uniform with Pr increasing.
Keywords:  turbulent convection      Prandtl number      direct numerical simulations (DNS)  
Received:  21 March 2021      Revised:  07 May 2021      Accepted manuscript online:  03 June 2021
PACS:  47.27.te (Turbulent convective heat transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11961160719, 11702128, 91752201, and 11772362), the Shenzhen Fundamental Research Program (Grant No. JCYJ20190807160413162), the Fundamental Research Funds for the Central Universities (Sun Yat-sen University under Grant No. 19lgzd15), and the Department of Science and Technology of Guangdong Province, China (Grant No. 2019B21203001).
Corresponding Authors:  Yun Bao     E-mail:  stsby@mail.sysu.edu.cn

Cite this article: 

Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸) Effects of Prandtl number in two-dimensional turbulent convection 2021 Chin. Phys. B 30 094701

[1] Ahlers G, Grossmann S and Lohse D 2009 Rev. Mod. Phys. 81 503
[2] Lohse D and Xia K Q 2010 Annu. Rev. Fluid Mech. 42 335
[3] Xia K Q 2013 Theor. Appl. Mech. Lett. 3 052001
[4] Globe S and Dropkin D 1959 J. Heat Transfer 81 24
[5] Davis A H 1922 Phil. Mag. 43 329
[6] Davis A H 1922 Phil. Mag. 44 920
[7] Heslot F, Castaing B and Libchaber A 1987 Phys. Rev. A 36 5870
[8] Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A, Thomae S, Wu X Z, Zaleski S and Zanetti G 1989 J. Fluid Mech. 204 1
[9] Shraiman B I and Siggia E D 1990 Phys. Rev. A 42 3650
[10] Grossmann S and Lohse D 2000 J. Fluid Mech. 407 27
[11] Grossmann S and Lohse D 2001 Phys. Rev. Lett. 86 3316
[12] Stevens R J A M, van der Poel E P, Grossmann S and Lohse D 2013 J.Fluid Mech. 730 295
[13] Kerr R M and Herring J R 2000 J. Fluid Mech. 419 325
[14] Silano G, Sreenivasan K R and Verzicco R 2010 J. Fluid Mech. 662 409
[15] Xia K Q, Lam S and Zhou S Q 2002 Phys. Rev. Lett. 88 064501
[16] Pandey A and Verma M K 2016 Phys. Fluids 28 095105
[17] Yang Y H, Zhu X, Wang B F, Liu Y L and Zhou Q 2020 Phys. Fluids 32 015101
[18] Shishkina O, Emran M S, Grossmann S and Lohse D 2017 Phys. Rev. Fluids 2 103502
[19] Verzicco R and Camussi R 1999 J. Fluid Mech. 383 55
[20] Breuer M, Wessling S, Schmalzl J and Hansen U 2004 Phys. Rev. E 69 026302
[21] Schmalzl J, Breuer M and Hansen U 2004 Europhys. Lett. 67 390
[22] Alhers G and Xu X C 2001 Phys. Rev. Lett. 86 3320
[23] van der Poel E P, Stevens R J A M and Lohse D 2013 J. Fluid Mech. 736 177
[24] Roche P E, Castaing B, Chabaud B and Hébral B 2002 Europhys. Lett. 58 693
[25] Li X M, He J D, Tian Y, Hao P and Huang S D 2021 J. Fluid Mech. 915 A60
[26] Lam S, Shang X D, Zhou S Q and Xia K Q 2002 Phys. Rev. E 65 066306
[27] Lohse D and Grossmann S 2002 Phys. Rev. E 66 016305
[28] Huang S D, Kaczorowski M, Ni R and Xia K Q 2013 Phys. Rev. Lett. 111 104501
[29] Zhou W F and Chen J 2018 Phys. Fluids 30 111705
[30] Zou H Y, Zhou W F, Chen X, Bao Y, Chen J and She Z S 2019 Acta Mechanica Sinica 35 713
[31] Huang Y X and Zhou Q 2013 J. Fluid Mech. 737 R3
[32] Gao Z Y, Luo J H and Bao Y 2018 Chin. Phys. B 27 104702
[33] Bao Y, Luo J H and Ye M X 2017 J. Mech. 34 159
[34] Bao Y, He J C and Gao Z Y 2019 Acta Phys. Sin. 68 16 (in Chinese)
[35] Zhang Y, Zhou Q and Sun C 2017 J. Fluid Mech. 814 165
[36] Sugiyama K, Ni R, Stevens R J A M, Chan T S, Zhou S Q, Xi H D, Sun C, Grossmann S, Xia K Q and Lohse D 2010 Phys. Rev. Lett. 105 034503
[37] Chandra M and Verma M K 2011 Phys. Rev. E 83 067303
[38] Wang Q, Xia S N, Wang B F, Sun D J, Zhou Q and Wan Z H 2018 J. Fluid Mech. 849 355
[39] Xu A, Chen X and Xi H D 2021 J. Fluid Mech. 910 A33
[40] Chen X, Huang S D, Xia K Q and Xi H D 2019 J. Fluid Mech. 877 R1
[41] Sugiyama K, Calzavarini E, Grossmann S and Lohse D 2009 J. Fluid Mech. 637 105
[42] van der Poel E P, Stevens R J A M and Lohse D 2011 Phys. Rev. E 84 045303
[43] van der Poel E P, Stevens R J A M, Sugiyama K and Lohse D 2012 Phys. Fluids 24 085104
[1] Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh-Bénard convection
Ming-Wei Fang(方明卫), Jian-Chao He(何建超), Zhan-Chao Hu(胡战超), and Yun Bao(包芸). Chin. Phys. B, 2022, 31(1): 014701.
[2] Strong coupling between height of gaps and thickness of thermal boundary layer in partitioned convection system
Ze-Peng Lin(林泽鹏), Yun Bao(包芸). Chin. Phys. B, 2019, 28(9): 094701.
[3] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[4] Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow
Fu Jia (付佳), Yi Shi-He (易仕和), Wang Xiao-Hu (王小虎), He Lin (何霖), Ge Yong (葛勇). Chin. Phys. B, 2014, 23(10): 104702.
[5] Improvement of surface flux calculation:A study based on measurements over alpine meadow in the eastern Tibet Plateau in summer
Li Sen (李森), Zhong Zhong (钟中). Chin. Phys. B, 2014, 23(2): 029201.
[6] Scaling of heat transfer in gas–gas injector combustor
Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Gao Yu-Shan(高玉闪). Chin. Phys. B, 2011, 20(6): 064701.
[7] Simulation of natural convection under high magnetic field by means of the thermal lattice Boltzmann method
Zhong Cheng-Wen(钟诚文), Xie Jian-Fei(解建飞), Zhuo Cong-Shan(卓从山), Xiong Sheng-Wei(熊生伟), and Yin Da-Chuan(尹大川). Chin. Phys. B, 2009, 18(10): 4083-4093.
[8] SOME PROGRESS IN THE LATTICE BOLTZMANN MODEL
Feng Shi-de (冯士德), Tsutahara Michihisa, Ji Zhong-zhen (季仲贞). Chin. Phys. B, 2001, 10(7): 587-593.
No Suggested Reading articles found!