Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034201    DOI: 10.1088/1674-1056/abd38a

Numerical simulation of super-continuum laser propagation in turbulent atmosphere

Ya-Qian Li(李雅倩)1,2,3, Wen-Yue Zhu (朱文越)1,3, and Xian-Mei Qian(钱仙妹)1,3,
1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
Abstract  Considering the atmospheric extinction and turbulence effects, we investigate the propagation performances of super-continuum laser sources in atmospheric turbulence statistically by using the numerical simulation method, and the differences in propagation properties between the super-continuum (SC) laser and its pump laser are also analyzed. It is found that the propagation characteristics of super-continuum laser are almost similar to those of the pump laser. The degradation of source coherence degree may cause the relative beam spreading and scintillation indexes to decrease at different propagation distances or different turbulence strengths. The root-mean-square value of beam wandering is insensitive to the variation of source correlation length, and less aperture averaging occurs when the laser source becomes less coherent. Additionally, from the point of view of beam wandering, the SC laser has no advantage over the pump laser. Although the pump laser can bring about a bigger aperture average, the SC laser has a lower scintillation which may be due to the multiple wavelength homogenization effects on intensity fluctuations. This would be the most important virtue of the SC laser that can be utilized to improve the performance of laser engineering.
Keywords:  super-continuum laser source      pump laser source      numerical simulation      atmospheric propagation properties  
Received:  30 August 2020      Revised:  19 October 2020      Accepted manuscript online:  15 December 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.68.Bz (Atmospheric turbulence effects)  
Fund: Project supported by the Director Fund of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. 20191002).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹) Numerical simulation of super-continuum laser propagation in turbulent atmosphere 2021 Chin. Phys. B 30 034201

1 Kudlinski A and Mussot A 2008 Opt. Lett. 33 2407
2 Song R, Hou J, Chen S P, Yang W Q and Lu Q S 2012 Opt. Lett. 37 1529
3 Song R, Hou J, Chen S P, Yang W Q, Liu T and Lu Q S 2013 Laser Phys. Lett. 10 015401
4 Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T M, Sujecki S, Abdelmoneim N and Tang Z 2014 Nat. Photon. 8 830
5 Zhan H W, Wei H F, Liu T, Zhuo X F, Li J, Tong W J, Chen Z L, Chen S P, Hou J and Lu Q S 2014 Acta Phys. Sin. 63 044205 (in Chinese)
6 Jian Y Q, Yan P G, Cheng L K, Qun Z T and Nong Z X 2006 Acta Phys. Sin. 55 1809 (in Chinese)
7 Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318
8 Manninen A, Kaariainen T, Parviainen T, Buchter S, Heilio M and Laurila T 2014 Opt. Express 22 7172
9 Zhang X M, Chen J D, Lin P, Ma W Z, Jia Q S, Wang T S, Zhang P and Wang D S 2017 Proceedings of the 16th international conference on optical communications and networks, Augest 7-10, 2017, pp. 1-3
10 Xie C Y, Zhai W C, Li J J, Yin L, Wu H Y and Zheng X B 2020 Int. J. Remote Sens. 41 4981
11 Brown D M, Shi K B, Liu Z W and Philbrick C R 2008 Opt. Express 16 8457
12 Zhang L W, Chen L, Li X and Gao J Y High Power Laser Part. Beams 20 1603 (in Chinese)
13 Chen Y W, Raikkonen E, Kaasalainen S, Suomalainen J, Hakala T, Hyyppa J and Chen R Z 2010 Sensors 10 7057
14 Li Z H, Zhou P, Cao J Q, Han K, Hou J, Xu X J and Liu Z J Proceedings of the 9th National Symposium on Photoelectric Technology, May 29, 2010, Beijing, China, p. 4 (in Chinese)
15 Wu W M, Jin A J, Ning Y, Ma Y X and Xu X J 2014 Optik 125 6793
16 Kang L2015 Propagation Performance of Supercontinuum Source in Atmosphere, MS Disertation (Hefei: Heifei Institues of Physical Science, Chinese Academy of Sciences)(in Chinese)
17 Sun H Y, Wu W M, Jin A J, Chen S P and Ning Y 2014 Chin. J. Lasers 41 0413001
18 Harding C M, Johnston R A and Lane R G 1999 Appl. Opt. 38 2161
19 Qian X M, Zhu W Y and Rao R Z 2009 Acta Phys. Sin. 58 6633 (in Chinese)
20 Wang F, Yu J Y, Liu X L and Cai Y J 2018 Acta Phys. Sin. 67 184203 (in Chinese)
21 Frehlich R 2000 Appl. Opt. 39 393
22 Xiao X F and Voelz D G 2006 Opt. Express 14 6986
23 Qian X M, Zhu W Y and Rao R Z 2012 Chin. Phys. B 21 094202
24 Feizulin Z I and Kravtsov Y A 1967 Radiophysics and Quantum Electronics 10 33
25 Rao R Z2005 Light propagation in the turbulent atmosphere (Hefei: Anhui Science and Technology Press) pp. 263-264 (in Chinese)
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[11] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!