1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; 3 Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Abstract Ba2IrO4 is a sister compound of the widely investigated Sr2IrO4 and has no IrO6 octahedral rotation nor net canted antiferromagnetic moment, thus it acts as a system more similar to the high-Tc cuprate. In this work, we synthesize the Ba2IrO4 epitaxial films by reactive molecular beam epitaxy and study their crystalline structure and transport properties under biaxial compressive strain. High resolution scanning transmission electron microscopy and x-ray diffraction confirm the high quality of films with partial strain relaxation. Under compressive epitaxial strain, the Ba2IrO4 exhibits the strain-driven enhancement of the conductivity, consistent with the band gap narrowing and the stronger hybridization of Ir-t2g and O-2p orbitals predicted in the first-principles calculations.
(Superconducting films and low-dimensional structures)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774153, 11861161004, 51772143, 11974163, and 51672125), the National Key Research and Development Program of China (Grant No. 2016YFA0201104), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 0213-14380167 and 0213-14380198), and the Hong Kong Research Grants Council (RGC) through the NSFC-RGC Joint Research Scheme, China (Grant No. N_PolyU531/18). {These authors contributed equally to this work.
Corresponding Authors:
Jian Zhou, Ye Zhu, Yue-Feng Nie
E-mail: zhoujian@nju.edu.cn;yezhu@polyu.edu.hk;ynie@nju.edu.cn
Cite this article:
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰) Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films 2021 Chin. Phys. B 30 087401
[1] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett.101 076402 [2] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science323 1329 [3] Xu H, Cui Z Z, Zhai X F and Lu Y L 2019 Chin. Phys. B28 078102 [4] Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Mitchell J F, Allen J W and Kim B J 2014 Science345 187 [5] De la Torre A, McKeown Walker S, Bruno F Y, Riccó S, Wang Z, Gutierrez Lezama I, Scheerer G, Giriat G, Jaccard D, Berthod C, Kim T K, Hoesch M, Hunter E C, Perry R S, Tamai A and Baumberger F 2015 Phys. Rev. Lett.115 176402 [6] Kim J, Casa D, Upton M H, Gog T, Kim Y-J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G and Kim B J 2012 Phys. Rev. Lett.108 177003 [7] Kim Y K, Sung N H, Denlinger J D and Kim B J 2016 Nat. Phys.12 37 [8] Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T and Feng D L 2015 Phys. Rev. X5 041018 [9] Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Flint R, Qi T, Cao G and Hsieh D 2016 Nat. Phys.12 32 [10] Battisti I, Bastiaans K M, Fedoseev V, De la Torre A, Iliopoulos N, Tamai A, Hunter E C, Perry R S, Zaanen J, Baumberger F and Allan M P 2017 Nat. Phys.13 21 [11] Wang F and Senthil T 2011 Phys. Rev. Lett.106 136402 [12] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett.110 027002 [13] Cosio-Castaneda C, Tavizon G, Baeza A, De la Mora P and Escudero R 2007 J. Phys.: Condens. Matter19 446210 [14] Korneta O B, Qi T, Chikara S, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. B82 115117 [15] Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett.109 027204 [16] Souri M, Connell J G, Nichols J, Terzic J, Cao G and Seo A 2019 J. Appl. Phys.126 185101 [17] Guo W, Ji D X, Gu Z B, Zhou J, Nie Y F and Pan X Q 2020 Phys. Rev. B101 085101 [18] Okabe H, Isobe M, Takayama-Muromachi E, Koda A, Takeshita S, Hiraishi M, Miyazaki M, Kadono R, Miyake Y and Akimitsu J 2011 Phys. Rev. B83 155118 [19] Nichols J, Korneta O B, Terzic J, Cao G, Brill J W and Seo S S A 2014 Appl. Phys. Lett.104 121913 [20] Uchida M, Nie Y F, King P D C, Kim C H, Fennie C J, Schlom D G and Shen K M 2014 Phys. Rev. B90 075142 [21] Okabe H, Takeshita N, Isobe M, Takayama-Muromachi E, Muranaka T and Akimitsu J 2011 Phys. Rev. B84 115127 [22] Nichols J, Terzic J, Bittle E G, Korneta O B, De Long L E, Brill J W, Cao G and Seo S S A 2013 Appl. Phys. Lett.102 141908 [23] Cordfunke E H P and Meyer G 1962 Recl. Trav. Chim. Pays-Bas81 495 [24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci.6 15 [25] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [26] Blöchl P E 1994 Phys. Rev. B50 17953 [27] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [28] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett.100 136406
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.