CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures |
Jianbao Zhu(朱健保)1,2, Wei Qin(秦维)2, and Wenguang Zhu(朱文光)1,2,† |
1 Department of Physics, University of Science and Technology of China, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China; 2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Based on first-principles density functional theory calculation, we discover a novel form of spin-orbit (SO) splitting in two-dimensional (2D) heterostructures composed of a single Bi(111) bilayer stacking with a 2D semiconducting In2Se2 or a 2D ferroelectric α-In2Se3 layer. Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum, where the chirality of the spin texture reverses within the upper spin-split branch, in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point. The ferroelectric nature of α-In2Se3 further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field. Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction. This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications.
|
Received: 02 May 2021
Revised: 27 May 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant Nos. 11674299 and 11634011), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fund of Anhui Initiative Program in Quantum Information Technologies (Grant No. AHY170000), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000013). |
Corresponding Authors:
Wenguang Zhu
E-mail: wgzhu@ustc.edu.cn
|
Cite this article:
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光) Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures 2021 Chin. Phys. B 30 087307
|
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnaár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [2] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [3] Dresselhaus G 1955 Phys. Rev. 100 580 [4] Bychkov Y A and Rashba E I 1984 JEPT Lett. 39 78 [5] Hu L, Huang H, Wang Z, Jiang W, Ni X, Zhou Y, Zielasek V, Lagally M G, Huang B and Liu F 2018 Phys. Rev. Lett. 121 066401 [6] Li X, Zhang S, Huang H, Hu L, Liu F and Wang Q 2019 Nano Lett. 19 6005 [7] Liu K, Luo W, Ji J, Barone P, Picozzi S and Xiang H 2019 Nat. Commun. 10 5144 [8] Martínez P, Högl I, González-Ruano C, Cascales J P, Tiusan C, Lu Y, Hehn M, Matos-Abiague A, Fabian J, Žutić I and Aliev F G 2020 Phys. Rev. Appl. 13 014030 [9] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871 [10] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335 [11] Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blügel S, Echenique P M and Hofmann P Phys. Rev. Lett. 93 046403 [12] Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacilé D, Bruno P, Kern K and Grioni M 2007 Phys. Rev. Lett. 98 186807 [13] Ishizaka K, Bahramy M S, Murakawa H, et al. 2007 Nat. Mater. 98 186807 [14] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509 [15] Liebmann M, Rinaldi C, Di Sante D, et al. 2016 Adv. Mater. 28 560 [16] Zhang H, Liu C X and Zhang S C 2013 Phys. Rev. Lett. 111 066801 [17] Cao Y, Waugh J A, Zhang X W, et al. 2013 Nat. Phys. 9 499 [18] Bawden L, Riley J M, Kim C H, et al. 2015 Sci. Adv. 1 e1500495 [19] Waugh J A, Nummy T, Parham S, Liu Q, Zhang X, Zunger A and Dessau D S 2016 npj Quant. Mater. 1 16025 [20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [21] Blöchl P E 1994 Phys. Rev. B 50 17953 [22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [24] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [25] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [26] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [27] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S I, Blügel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801 [28] Yang F, Miao L, Wang Z F, et al. 2012 Phys. Rev. Lett. 109 016801 [29] Miao L, Wang Z F, Ming W M, et al. 2013 Proc. Natl. Acad. Sci. USA 110 2758 [30] Kim S H, Jin K H, Park J, Kim J S, Jhi S H, Kim T H and Yeom H W 2014 Phys. Rev. B 89 155436 [31] Su S H, Chuang P Y, Chen S W, et al. 2017 Chem. Mater. 29 8992 [32] Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223 [33] Ding W J, Zhu J B, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z Z and Zhu W G 2017 Nat. Commun. 8 14956 [34] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508 [35] Cui C, Hu W J, Yan X X, et al. 2018 Nano Lett. 18 1253 [36] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601 [37] Wan S, Li Y, Li W, Mao X, Zhu W and Zeng H 2018 Nanoscale 10 14885 [38] Wan S, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W and Zeng H 2018 Adv. Funct. Mater. 29 1808606 [39] Koma A 1992 Thin Solid Films 216 72 [40] Geim A K and Grigorieva I V 2013 Nature 499 419 [41] Datta S and Das B 1990 Appl. Phys. Lett. 56 665 [42] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515 [43] Ming W, Wang Z F, Zhou M, Yoon M and Liu F 2016 Nano Lett. 16 404 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|