Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087307    DOI: 10.1088/1674-1056/ac0784

Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures

Jianbao Zhu(朱健保)1,2, Wei Qin(秦维)2, and Wenguang Zhu(朱文光)1,2,†
1 Department of Physics, University of Science and Technology of China, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China;
2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Based on first-principles density functional theory calculation, we discover a novel form of spin-orbit (SO) splitting in two-dimensional (2D) heterostructures composed of a single Bi(111) bilayer stacking with a 2D semiconducting In2Se2 or a 2D ferroelectric α-In2Se3 layer. Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum, where the chirality of the spin texture reverses within the upper spin-split branch, in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point. The ferroelectric nature of α-In2Se3 further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field. Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction. This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications.
Keywords:  spin-orbit splitting      two-dimensional heterostructure      first-principles calculation  
Received:  02 May 2021      Revised:  27 May 2021      Accepted manuscript online:  03 June 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant Nos. 11674299 and 11634011), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fund of Anhui Initiative Program in Quantum Information Technologies (Grant No. AHY170000), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000013).
Corresponding Authors:  Wenguang Zhu     E-mail:

Cite this article: 

Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光) Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures 2021 Chin. Phys. B 30 087307

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnaár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Dresselhaus G 1955 Phys. Rev. 100 580
[4] Bychkov Y A and Rashba E I 1984 JEPT Lett. 39 78
[5] Hu L, Huang H, Wang Z, Jiang W, Ni X, Zhou Y, Zielasek V, Lagally M G, Huang B and Liu F 2018 Phys. Rev. Lett. 121 066401
[6] Li X, Zhang S, Huang H, Hu L, Liu F and Wang Q 2019 Nano Lett. 19 6005
[7] Liu K, Luo W, Ji J, Barone P, Picozzi S and Xiang H 2019 Nat. Commun. 10 5144
[8] Martínez P, Högl I, González-Ruano C, Cascales J P, Tiusan C, Lu Y, Hehn M, Matos-Abiague A, Fabian J, Žutić I and Aliev F G 2020 Phys. Rev. Appl. 13 014030
[9] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[10] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[11] Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blügel S, Echenique P M and Hofmann P Phys. Rev. Lett. 93 046403
[12] Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacilé D, Bruno P, Kern K and Grioni M 2007 Phys. Rev. Lett. 98 186807
[13] Ishizaka K, Bahramy M S, Murakawa H, et al. 2007 Nat. Mater. 98 186807
[14] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509
[15] Liebmann M, Rinaldi C, Di Sante D, et al. 2016 Adv. Mater. 28 560
[16] Zhang H, Liu C X and Zhang S C 2013 Phys. Rev. Lett. 111 066801
[17] Cao Y, Waugh J A, Zhang X W, et al. 2013 Nat. Phys. 9 499
[18] Bawden L, Riley J M, Kim C H, et al. 2015 Sci. Adv. 1 e1500495
[19] Waugh J A, Nummy T, Parham S, Liu Q, Zhang X, Zunger A and Dessau D S 2016 npj Quant. Mater. 1 16025
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[25] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[26] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[27] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S I, Blügel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801
[28] Yang F, Miao L, Wang Z F, et al. 2012 Phys. Rev. Lett. 109 016801
[29] Miao L, Wang Z F, Ming W M, et al. 2013 Proc. Natl. Acad. Sci. USA 110 2758
[30] Kim S H, Jin K H, Park J, Kim J S, Jhi S H, Kim T H and Yeom H W 2014 Phys. Rev. B 89 155436
[31] Su S H, Chuang P Y, Chen S W, et al. 2017 Chem. Mater. 29 8992
[32] Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223
[33] Ding W J, Zhu J B, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z Z and Zhu W G 2017 Nat. Commun. 8 14956
[34] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[35] Cui C, Hu W J, Yan X X, et al. 2018 Nano Lett. 18 1253
[36] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[37] Wan S, Li Y, Li W, Mao X, Zhu W and Zeng H 2018 Nanoscale 10 14885
[38] Wan S, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W and Zeng H 2018 Adv. Funct. Mater. 29 1808606
[39] Koma A 1992 Thin Solid Films 216 72
[40] Geim A K and Grigorieva I V 2013 Nature 499 419
[41] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[42] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
[43] Ming W, Wang Z F, Zhou M, Yoon M and Liu F 2016 Nano Lett. 16 404
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!