Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098504    DOI: 10.1088/1674-1056/abeb0c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Device design based on the covalent homocouplingof porphine molecules

Minghui Qu(曲明慧)1, Jiayi He(贺家怡)1, Kexin Liu(刘可心)1, Liemao Cao(曹烈茂)1,†, Yipeng Zhao(赵宜鹏)1, Jing Zeng(曾晶)1, and Guanghui Zhou(周光辉)2,‡
1 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China;
2 Department of Physics, Key Laboratory for Low-Dimensional Structures and Quantum Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China
Abstract  Porphine has a great potential application in molecular electronic devices. In this work, based on the density functional theory (DFT) and combining with nonequilibrium Green's function (NEGF), we study the transport properties of the molecular devices constructed by the covalent homocoupling of porphine molecules conjunction with zigzag graphene nanoribbons electrodes. We find that different couple phases bring remarkable differences in the transport properties. Different coupling phases have different application prospects. We analyze and discuss the differences in transport properties through the molecular energy spectrum, electrostatic difference potential, local density of states (LDOS), and transmission pathway. The results are of great significance for the design of porphine molecular devices in the future.
Keywords:  transport properties      molecular electronic devices      nonequilibrium Green's functions  
Received:  03 January 2021      Revised:  27 January 2021      Accepted manuscript online:  02 March 2021
PACS:  85.65.+h (Molecular electronic devices)  
  73.40.-c (Electronic transport in interface structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774085), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50016), and the General Project of Education Department in Hunan, China (Grant No. 19C261), and Science Foundation of Hengyang Normal University (Nos. 18D26 and 18D27).
Corresponding Authors:  Liemao Cao, Guanghui Zhou     E-mail:  liemao_cao@hynu.edu.cn;ghzhou@hunnu.edu.cn

Cite this article: 

Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉) Device design based on the covalent homocouplingof porphine molecules 2021 Chin. Phys. B 30 098504

[1] Fu B, Mosquera M A, Schatz G C, Ratner M A and Hsu L Y 2018 Nano Lett. 18 5015
[2] Caneva S, Gehring P, García-Suárez V M, García-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and Zant H S J V D 2018 Nat. Nanotechnol. 13 1126
[3] Zhang L, Bagrets A, Xenioti D, Korytár R, Schackert M, Miyamachi T, Schramm F, Fuhr O, Chandrasekar R, Alouani M, Ruben M, Wulfhekel W and Evers F 2015 Phys. Rev. B 91 195424
[4] Cao L, Li X, Liu G, Liu Z and Zhou G 2017 Org. Electron. 48 357
[5] Liu X, Yang J, Zhai X, Yang H, Zhang Y, Zhou L, Wang J, Ge G and Wang G 2020 Phys. Chem. Chem. Phys. 22 6755
[6] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P and Xie H Q 2017 Carbon 122 687
[7] Cao L, Li X, Liu G, Liu Z and Zhou G 2017 Chem. Phys. 488 17
[8] Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B and Venkataraman L 2009 Nat. Nanotechnol. 4 230
[9] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q and Long M Q 2017 Carbon 113 18
[10] Zhang A, Cao L, Liu G, Liu Z, Liao W and Zhou G 2019 J. Magn. Magn. Mater. 471 555
[11] Liu Y, Li B, Chen S, Jiang X and Chen K 2017 Appl. Phys. Lett. 111 133107
[12] Zeng J and Chen K 2014 Appl. Phys. Lett. 104 033104
[13] Wu D, Cao X, Jia P, Zeng Y, Feng Y, Tang L, Zhou W and Chen K 2020 Sci. China-Phys. Mech. Astron. 63 276811
[14] Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C and Hong W 2019 Nat. Mater. 18 364
[15] Meng F, Hervault Y M, Shao Q, Hu B, Norel L, Rigaut S and Chen X 2014 Nat. Commun. 5 3032
[16] Frisenda R, Harzmann G D, Gil J A C, Thijssen J M, Mayor M and van der Zant H S J 2016 Nano Lett. 16 4733
[17] Harzmann G D, Frisenda R, van der Zant H S J and Mayor M 2015 Angew. Chem. Int. Ed. 54 13425
[18] Zeng J, Chen K Q, and Long M Q 2016 Org. Electron. 35 12
[19] Nguyen T Q, Escaño M C S, Shimoji N, Nakanishi H and Kasai H 2008 Phys. Rev. B 77 195307
[20] He Y, Zhang J and Zhao J 2014 J. Phys. Chem. C 118 18325
[21] Cho H S, Jeong D H, Cho S, Kim D, Matsuzaki Y, K Tanaka, Tsuda A and Osuka A 2002 J. Am. Chem. Soc. 124 14642
[22] Mandal B, Sarkar S and Sarkar P 2015 J. Phys. Chem. C 119 3400
[23] B Li, Zheng C, Liu H, Zhu J, Zhang H, Gao D and Huang W 2016 ACS Appl. Mater. Interfaces 8 27438
[24] Lindsey J S and Bocian D F 2011 Acc. Chem. Res. 44 638
[25] Chen Z, P Gao, Wang W, Klyatskaya S, Zhao-Karger Z, Wang D, Fuhr C K, Fichtner M and Ruben M 2019 ChemSusChem 12 3737
[26] Zhou Q, Yamada A, Feng Q, Hoskins A, Dunietz B D and Lewis K M 2017 ACS Appl. Mater. Interfaces 9 15901
[27] Esposito T, Dinolfo P H and Lewis K M 2018 Org. Electon. 63 58
[28] Abbassi M, Zwick P, Rates A, Stefani D, Prescimone A, Mayor M, van der Zant H S J and Dulić D 2019 Chem. Sci. 10 8299
[29] Xia Y, Shuai L, Wang Y, Ma Y, Han L, Qiu M, Zhang Z and Leung M K H 2020 Phys. Chem. Chem. Phys. 22 4080
[30] Jurow M, Schuckman A E, Batteas J D and Drain C M 2010 Coord. Chem. Rev. 254 2297
[31] Garg M, Naik T R, Pathak R, Rao V R, Liao C H, Li K H, Sun H, Li X and Singh R 2018 J. Appl. Phys. 124 195702
[32] Kole A and Ang D S 2018 AIP Advances 8 085009
[33] Nozaki D, Lokamani, Santana-Bonilla A, Dianat A, Gutierrez R and Cuniberti G 2015 J. Phys. Chem. Lett. 6 3950
[34] Li J, Li T, Duan Y and Li H 2020 Mater. Des. 189 108487
[35] Yao Y, E Ashalley, Niu X, Dai L, Yu P, Chen W, Qin Z, Zhang L and Wang Z 2019 Appl. Phys. Lett. 114 073101
[36] He Y, Garnica M, Bischoff F, Ducke J, Bocquet M L, Batzill M, Auwäeter W and Barth J V 2017 Nat. Chem. 9 33
[37] Zeng J, Chen K Q and Tong Y X 2018 Carbon 127 611
[38] Seufert K, McBride F, Jaekel S, Wit B, Haq S, Steiner A, Poli P, Persson M, Raval R and Grill L 2019 J. Phys. Chem. C 123 16690
[39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[40] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[41] Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P and Sanchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[42] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[43] Wang B G, Wang J and Guo H 2001 J. Phys. Soc. Jpn. 70 2645
[44] Cao L, Li X, Jia C, Liu G, Liu Z and Zhou G 2018 Carbon 127 519
[45] Solomon G C, Herrmann C, T Hansen, Mujica V and Ratner M A 2010 Nat. Chem. 2 223
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[3] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[4] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[5] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[6] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[7] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[8] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[9] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[10] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[11] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[12] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[13] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[14] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[15] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
No Suggested Reading articles found!