INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Device design based on the covalent homocouplingof porphine molecules |
Minghui Qu(曲明慧)1, Jiayi He(贺家怡)1, Kexin Liu(刘可心)1, Liemao Cao(曹烈茂)1,†, Yipeng Zhao(赵宜鹏)1, Jing Zeng(曾晶)1, and Guanghui Zhou(周光辉)2,‡ |
1 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China; 2 Department of Physics, Key Laboratory for Low-Dimensional Structures and Quantum Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China |
|
|
Abstract Porphine has a great potential application in molecular electronic devices. In this work, based on the density functional theory (DFT) and combining with nonequilibrium Green's function (NEGF), we study the transport properties of the molecular devices constructed by the covalent homocoupling of porphine molecules conjunction with zigzag graphene nanoribbons electrodes. We find that different couple phases bring remarkable differences in the transport properties. Different coupling phases have different application prospects. We analyze and discuss the differences in transport properties through the molecular energy spectrum, electrostatic difference potential, local density of states (LDOS), and transmission pathway. The results are of great significance for the design of porphine molecular devices in the future.
|
Received: 03 January 2021
Revised: 27 January 2021
Accepted manuscript online: 02 March 2021
|
PACS:
|
85.65.+h
|
(Molecular electronic devices)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774085), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50016), and the General Project of Education Department in Hunan, China (Grant No. 19C261), and Science Foundation of Hengyang Normal University (Nos. 18D26 and 18D27). |
Corresponding Authors:
Liemao Cao, Guanghui Zhou
E-mail: liemao_cao@hynu.edu.cn;ghzhou@hunnu.edu.cn
|
Cite this article:
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉) Device design based on the covalent homocouplingof porphine molecules 2021 Chin. Phys. B 30 098504
|
[1] Fu B, Mosquera M A, Schatz G C, Ratner M A and Hsu L Y 2018 Nano Lett. 18 5015 [2] Caneva S, Gehring P, García-Suárez V M, García-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and Zant H S J V D 2018 Nat. Nanotechnol. 13 1126 [3] Zhang L, Bagrets A, Xenioti D, Korytár R, Schackert M, Miyamachi T, Schramm F, Fuhr O, Chandrasekar R, Alouani M, Ruben M, Wulfhekel W and Evers F 2015 Phys. Rev. B 91 195424 [4] Cao L, Li X, Liu G, Liu Z and Zhou G 2017 Org. Electron. 48 357 [5] Liu X, Yang J, Zhai X, Yang H, Zhang Y, Zhou L, Wang J, Ge G and Wang G 2020 Phys. Chem. Chem. Phys. 22 6755 [6] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P and Xie H Q 2017 Carbon 122 687 [7] Cao L, Li X, Liu G, Liu Z and Zhou G 2017 Chem. Phys. 488 17 [8] Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B and Venkataraman L 2009 Nat. Nanotechnol. 4 230 [9] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q and Long M Q 2017 Carbon 113 18 [10] Zhang A, Cao L, Liu G, Liu Z, Liao W and Zhou G 2019 J. Magn. Magn. Mater. 471 555 [11] Liu Y, Li B, Chen S, Jiang X and Chen K 2017 Appl. Phys. Lett. 111 133107 [12] Zeng J and Chen K 2014 Appl. Phys. Lett. 104 033104 [13] Wu D, Cao X, Jia P, Zeng Y, Feng Y, Tang L, Zhou W and Chen K 2020 Sci. China-Phys. Mech. Astron. 63 276811 [14] Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C and Hong W 2019 Nat. Mater. 18 364 [15] Meng F, Hervault Y M, Shao Q, Hu B, Norel L, Rigaut S and Chen X 2014 Nat. Commun. 5 3032 [16] Frisenda R, Harzmann G D, Gil J A C, Thijssen J M, Mayor M and van der Zant H S J 2016 Nano Lett. 16 4733 [17] Harzmann G D, Frisenda R, van der Zant H S J and Mayor M 2015 Angew. Chem. Int. Ed. 54 13425 [18] Zeng J, Chen K Q, and Long M Q 2016 Org. Electron. 35 12 [19] Nguyen T Q, Escaño M C S, Shimoji N, Nakanishi H and Kasai H 2008 Phys. Rev. B 77 195307 [20] He Y, Zhang J and Zhao J 2014 J. Phys. Chem. C 118 18325 [21] Cho H S, Jeong D H, Cho S, Kim D, Matsuzaki Y, K Tanaka, Tsuda A and Osuka A 2002 J. Am. Chem. Soc. 124 14642 [22] Mandal B, Sarkar S and Sarkar P 2015 J. Phys. Chem. C 119 3400 [23] B Li, Zheng C, Liu H, Zhu J, Zhang H, Gao D and Huang W 2016 ACS Appl. Mater. Interfaces 8 27438 [24] Lindsey J S and Bocian D F 2011 Acc. Chem. Res. 44 638 [25] Chen Z, P Gao, Wang W, Klyatskaya S, Zhao-Karger Z, Wang D, Fuhr C K, Fichtner M and Ruben M 2019 ChemSusChem 12 3737 [26] Zhou Q, Yamada A, Feng Q, Hoskins A, Dunietz B D and Lewis K M 2017 ACS Appl. Mater. Interfaces 9 15901 [27] Esposito T, Dinolfo P H and Lewis K M 2018 Org. Electon. 63 58 [28] Abbassi M, Zwick P, Rates A, Stefani D, Prescimone A, Mayor M, van der Zant H S J and Dulić D 2019 Chem. Sci. 10 8299 [29] Xia Y, Shuai L, Wang Y, Ma Y, Han L, Qiu M, Zhang Z and Leung M K H 2020 Phys. Chem. Chem. Phys. 22 4080 [30] Jurow M, Schuckman A E, Batteas J D and Drain C M 2010 Coord. Chem. Rev. 254 2297 [31] Garg M, Naik T R, Pathak R, Rao V R, Liao C H, Li K H, Sun H, Li X and Singh R 2018 J. Appl. Phys. 124 195702 [32] Kole A and Ang D S 2018 AIP Advances 8 085009 [33] Nozaki D, Lokamani, Santana-Bonilla A, Dianat A, Gutierrez R and Cuniberti G 2015 J. Phys. Chem. Lett. 6 3950 [34] Li J, Li T, Duan Y and Li H 2020 Mater. Des. 189 108487 [35] Yao Y, E Ashalley, Niu X, Dai L, Yu P, Chen W, Qin Z, Zhang L and Wang Z 2019 Appl. Phys. Lett. 114 073101 [36] He Y, Garnica M, Bischoff F, Ducke J, Bocquet M L, Batzill M, Auwäeter W and Barth J V 2017 Nat. Chem. 9 33 [37] Zeng J, Chen K Q and Tong Y X 2018 Carbon 127 611 [38] Seufert K, McBride F, Jaekel S, Wit B, Haq S, Steiner A, Poli P, Persson M, Raval R and Grill L 2019 J. Phys. Chem. C 123 16690 [39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [40] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [41] Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P and Sanchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 [42] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 [43] Wang B G, Wang J and Guo H 2001 J. Phys. Soc. Jpn. 70 2645 [44] Cao L, Li X, Jia C, Liu G, Liu Z and Zhou G 2018 Carbon 127 519 [45] Solomon G C, Herrmann C, T Hansen, Mujica V and Ratner M A 2010 Nat. Chem. 2 223 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|