|
|
Excess-iron driven spin glass phase in Fe1+yTe1-xSex |
Long Tian(田龙)1, Panpan Liu(刘盼盼)1, Tao Hong(洪涛)2, Tilo Seydel3, Xingye Lu(鲁兴业)1,†, Huiqian Luo(罗会仟)4, Shiliang Li(李世亮)4, and Pengcheng Dai(戴鹏程)5,‡ |
1 Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China; 2 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; 3 Institut Max von Laue-Paul Langevin(ILL), 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA |
|
|
Abstract The iron-chalcogenide superconductor FeTe1-xSex displays a variety of exotic features distinct from iron pnictides. Although much effort has been devoted to understanding the interplay between magnetism and superconductivity near x=0.5, the existence of a spin glass phase with short-range magnetic order in the doping range (x~0.1-0.3) has rarely been studied. Here, we use DC/AC magnetization and (quasi) elastic neutron scattering to confirm the spin-glass nature of the short-range magnetic order in a Fe1.07Te0.8Se0.2 sample. The AC-frequency dependent spin-freezing temperature Tf generates a frequency sensitivity ΔTf(ω) /[Tf(ω) Δlog10ω]≈0.028 and the description of the critical slowing down with τ=τ0(Tf / TSG)-zv gives TSG≈22 K and zv≈10, comparable to that of a classical spin-glass system. We have also extended the frequency-dependent Tf to the smaller time scale using energy-resolution-dependent neutron diffraction measurements, in which the TN of the short-range magnetic order increases systematically with increasing energy resolution. By removing the excess iron through annealing in oxygen, the spin-freezing behavior disappears, and bulk superconductivity is realized. Thus, the excess Fe is the driving force for the formation of the spin-glass phase detrimental to bulk superconductivity.
|
Received: 07 May 2021
Revised: 25 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
78.70.Nx
|
(Neutron inelastic scattering)
|
|
Fund: The work at Beijing Normal University is supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and 11922402, X.L.). Work at Rice is supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), under Contract No. DE-SC0012311 (P.D.). A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. |
Corresponding Authors:
Xingye Lu, Pengcheng Dai
E-mail: luxy@bnu.edu.cn;pdai@rice.edu
|
Cite this article:
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程) Excess-iron driven spin glass phase in Fe1+yTe1-xSex 2021 Chin. Phys. B 30 087402
|
[1] Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K and Dai P C 2009 Phys. Rev. B 79 054503 [2] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001 [3] Fang C, Bernevig B A and Hu J P 2009 Europhys. Lett. 86 67005 [4] Wen J, Xu G, Gu G, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503 [5] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182 [6] Rameau J D, Zaki N, Gu G D and Johnson P D 2019 Phys. Rev. B 99 205117 [7] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362 333 [8] Zhu S Y, Kong L Y, Cao L, Chen H, Papaj M, Du S X, Xing Y Q, Liu W Y, Wang D F, Shen C M, Yang F Z, Schneeloch J, Zhong R D, Gu G D, Fu L, Zhang Y Y, Ding H and Gao H J 2020 Science 367 189 [9] Lumsden M D and Christianson A D 2010 J. Phys.: Condens. Matter 22 203203 [10] Khasanov R, Bendele M, Amato A, Babkevich P, Boothroyd A T, Cervellino A, Conder K, Gvasaliya S N, Keller H, Klauss H H, Luetkens H, Pomjakushin V, Pomjakushina E and Roessli B 2009 Phys. Rev. B 80 140511(R) [11] Martinelli A, Palenzona A, Tropeano M, Ferdeghini C, Putti M, Cimberle M R, Nguyen T D, Affronte M and Ritter C 2010 Phys. Rev. B 81 094115 [12] Xia Y, Qian D, Wray L, Hsieh D, Chen G F, Luo J L, Wang N L and Hasan M Z 2009 Phys. Rev. Lett. 103 037002 [13] Balatsky A V and Parker D 2009 Physics 2 59 [14] Wilson S D, Yamani Z, Rotundu C R, Freelon B, Bourret-Courchesne E and Birgeneau R J 2009 Phys. Rev. B 79 184519 [15] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 [16] Ma F J, Ji W, Hu J P, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003 [17] Xu Z J, Wen J S, Xu G Y, Jie Q, Lin Z W, Li Q, Chi S X, Singh D K, Gu G D and Tranquada J M 2010 Phys. Rev. B 82 104525 [18] Bendele M, Babkevich P, Katrych S, Gvasaliya S N, Pomjakushina E, Conder K, Roessli B, Boothroyd A T, Khasanov R and Keller H 2010 Phys. Rev. B 82 212504 [19] Argyriou D N, Hiess A, Akbari A, Eremin I, Korshunov M M, Hu J, Qian B, Mao Z Q, Qiu Y M, Broholm C and Bao W 2010 Phys. Rev. B 81 220503(R) [20] Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeş K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A and Broholm C 2010 Nat. Mater. 9 718 [21] Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Ratcliff W, Gu G D and Tranquada J M 2009 Phys. Rev. B 80 104506 [22] Katayama N, Ji S, Louca D, Lww S, Fujita M, Sato T J, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K and Tranquada J M 2010 J. Phys. Soc. Japan 79 113702 [23] Keimer B, Belk N, Birgeneau R J, Cassanho A, Chen C Y, Greven M and Kastner M A 1992 Phys. Rev. B 46 14034 [24] Koziol Z, Piechota J and Szymczak H 1989 J. Phys. France 50 3123 [25] Sternlieb B J, Luke G M and Uemura Y J 1990 Phys. Rev. B 41 8866 [26] Lu X Y, Tam D W, Zhang C L, Luo H Q, Wang M, Zhang R, Harriger L W, Keller T, Keimer B, Regnault L P, Maier T A and Dai P C 2014 Phys. Rev. B 90 024509 [27] Paulose P L, Yadav C S and Subhedar K M 2010 Europhys. Lett. 90 27011 [28] Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L and Wang N L 2009 Phys. Rev. B 79 140509(R) [29] Skripov A V, Cook J C, Udovic T J, Gonzalez M A, Hempelmann R and Kozhanov V N 2003 J. Phys.: Condens. Matter 15 3555 [30] Takahashi M, Takeya H, Aczel A A, Hong T, Matsuda M and Kawano-Furukaw H 2018 Physica B 551 15 [31] Zhou W, Sun Y, Zhang S, Zhuang J C, Yuan F F, Li X, Shi Z X, Yamada T, Tsuchiya Y and Tamegai T 2014 J. Phys. Soc. Jpn. 83 064704 [32] Mulder C A M, van Duyneveldt A J and Mydosh J A 1981 Phys. Rev. B 23 1384 [33] Hüser D, Wenger L E, van Duyneveldt A J and Mydosh J A 1983 Phys. Rev. B 27 3100 [34] Li Y, Kan X C, Liu X S, Feng S J, Lv Q R, Ur Rehman K M, Wang W, Liu C C, Wang X H and Xu Y L 2021 J. Alloys Compd. 852 156962 [35] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (London: Taylor and Francis) pp. 64-72 [36] Tholence J L 1984 Physics B+C 126B 157 [37] Mauger A, Ferre J and Nordblad 1988 Phys. Rev. B 37 9022 [38] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 [39] Gunnarsson K, Sveddh P, Nordblad P and Lundgren L 1988 Phys. Rev. Lett. 61 754 [40] Souletie J and Tholence J L 1985 Phys. Rev. B 32 516 [41] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801 [42] Murani A P 1981 J. Magn. Magn. Mater. 22 pp. 271-281 [43] Murani A P and Heidemann A 1978 Phys. Rev. Lett. 41 1402 [44] Noji T, Suzuki T, Abe H, Adachi T, Kato M and Koike Y 2010 J. Phys. Soc. Jpn. 79 084711 [45] Rodriguez E E, Stock C, Hsieh P Y, Butch N P, Paglione J and Green M A 2011 Chem. Sci. 2 1782 [46] Dong C H, Wang H D, Li Z J, Chen J, Yuan H Q and Fang M H 2011 Phys. Rev. B 84 224506 [47] Koshika Y, Usui T, Adachi S, Watanabe T, Sakano K, Simayi S and Yoshizawa M 2013 J. Phys. Soc. Jpn. 82 023703 [48] Sun Y, Tsuchiya Y, Yamada T, Taen T, Pyon S, Shi Z and Tamegai T 2013 J. Phys. Soc. Jpn. 82 115002 [49] Xu Z J, Schneeloch J A, Yi M, Zhao Y, Matsuda M, Pajerowski D M, Chi S X, Birgeneau R J, Gu G D, Tranquada J M and Xu G Y 2018 Phys. Rev. B 97 214511 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|