CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4 |
Kaiyao Zhou(周楷尧)1,2, Jun Deng(邓俊)1,2, Long Chen(陈龙)1,2, Wei Xia(夏威)4,5, Yanfeng Guo(郭艳峰)4,5, Yang Yang(杨洋)1,2, Jian-Gang Guo(郭建刚)1,3,†, and Liwei Guo(郭丽伟)1,2,3,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
Abstract Two-dimensional (2D) van der Waals material is a focus of research for its widespread application in optoelectronics, memories, and spintronics. The ternary compound Nb2SiTe4 is a van der Waals semiconductor with excellent air stability and small cleavage energy, which is suitable for preparing a few layers counterpart to explore novel properties. Here, properties of bulk Nb2SiTe4 with large in-plane electrical anisotropy are demonstrated. It is found that hole carriers dominate at a temperature above 45 K with a carrier active energy of 31.3 meV. The carrier mobility measured at 100 K is about 213 cm2·V-1·s-1 in bulk Nb2SiTe4, higher than the reported results. In a thin flake Nb2SiTe4, the resistivity ratio between the crystalline axes of a and b is reaching about 47.3 at 2.5 K, indicating that there exists a large anisotropic transport behavior in their basal plane. These novel transport properties provide accurate information for modulating or utilizing Nb2SiTe4 for electronic device applications.
|
Received: 09 April 2021
Revised: 08 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
72.80.Ga
|
(Transition-metal compounds)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE0202600, 2016YFA0300600, and 2017YFA0304700), by the National Natural Science Foundation of China (Grant Nos. 51922105, 51772322, and 11704401), and Beijing Natural Science Foundation (Grant No. Z200005). |
Corresponding Authors:
Jian-Gang Guo, Liwei Guo
E-mail: jgguo@iphy.ac.cn;lwguo@iphy.ac.cn
|
Cite this article:
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟) Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4 2021 Chin. Phys. B 30 087202
|
[1] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [2] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94 [3] Li J H, Yang L, Su S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685 [4] Qiao J S, Kong X H, Hu Z X, Yang F and Wei J 2014 Nat. Commun. 5 4475 [5] Ohtomo A and Hwang H Y 2004 Nature 427 423 [6] Wu C C, Shang N Z, Zhao Z X, Zhang Z H, Liang J, Liu C, Zuo Y G, Ding M C, Wang J H, Hong H, Xiong J and Liu K H 2021 Chin. Phys. B 30 027803 [7] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105 [8] Fuhrer M S, Kim B M, Dürkop T and Brintlinger T 2002 Nano Lett. 2 755 [9] Bao W Z, Cai X H, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104 [10] Buron J D, Pizzocchero F, Jepsen P U, Petersen D H, Caridad J M, Jessen B S, Booth T J and Bφggild P 2015 Sci. Rep. 5 12305 [11] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 232204 [12] Liu B B, Ma P J, Yu W J, Xu Y D and Gao L 2019 Chin. Phys. Lett. 36 064202 [13] Tao R, Li L, Zhu L J, Yan Y D, Guo L H, Fan X D and Zeng C G 2020 Chin. Phys. Lett. 37 077301 [14] Ruan Z L, Hao Z L, Zhang H, Sun S J, Zhang Y, Xiong W, Wang X Y, Lu J C and Cai J M 2021 Chin. Phys. Lett. 38 027201 [15] Wu B L, Wei Q, Zhang Z Q and Jiang H 2021 Chin. Phys. B 30 030504 [16] Zurrón Ó, Picón A and Plaja L 2018 New J. Phys. 20 053033 [17] Gong C, Zhang H J, Wang W H, Colombo L, Wallace R M and Cho K 2013 Appl. Phys. Lett. 103 053513 [18] Wu W, De D, Chang S C, Wang Y N, Peng H B, Bao J M and Pei S S 2013 Appl. Phys. Lett. 102 142106 [19] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011 [20] Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107 [21] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895 [22] Zhang S, Wang R, Wang X P, Wei B Y, Chen B, Wang H Q, Shi G, Wang F, Jia B, Ouyang Y P, Xie F J, Fei F C, Zhang M H, Wang X F, Wu D, Wan X G, Song F Q, Zhang H J and Wang B G 2019 Nano Lett. 20 709 [23] Fu H X, Liu C X and Yan B H 2020 Sci. Adv. 6 eaaz0948 [24] Zhao M X, Xia W, Wang Y, Luo M, Tian Z, Guo Y F, Hu W D and Xue J M 2019 ACS Nano 13 10705 [25] Monconduit L, Evain M, Brec R, Rouxel J and Canadell E 1993 Comptes rendus de l'Acadéie des sciences serie II 316 25 [26] Zhang T, Ma Y D, Xu X L, Lei C G, Huang B B and Dai Y 2019 J. Phys. Chem. Lett. 11 497 [27] Fang W Y, Li P A, Yuan J H, Xue K H and Wang J F 2020 J. Electron. Mater. 49 959 [28] Hbivnák E 1960 Czech. J. Phys. B 10 633 [29] Zhou K Y, Deng J, Guo L W and Guo J G 2020 Chin. Phys. Lett. 37 097402 [30] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [31] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36 [32] Gong W T, Li L, Gong P L, Zhou Y L, Zhang Z T, Zhou W C, Wang W K, Liu Z R and Tang D S 2019 Appl. Phys. Lett. 114 172104 [33] See https://www.cryst.ehu.es/rep/sam.html for "IR Raman and Hyper-Raman Modes" (last accessed January 2021) [34] Liu Y N, Gu Q Q, Peng Y, Qi S M, Zhang N, Zhang Y N, Ma X M, Zhu R, Tong L M, Feng J, Liu Z and Chen J H 2018 Adv. Mater. 30 1706402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|