Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087202    DOI: 10.1088/1674-1056/ac068f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4

Kaiyao Zhou(周楷尧)1,2, Jun Deng(邓俊)1,2, Long Chen(陈龙)1,2, Wei Xia(夏威)4,5, Yanfeng Guo(郭艳峰)4,5, Yang Yang(杨洋)1,2, Jian-Gang Guo(郭建刚)1,3,†, and Liwei Guo(郭丽伟)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract  Two-dimensional (2D) van der Waals material is a focus of research for its widespread application in optoelectronics, memories, and spintronics. The ternary compound Nb2SiTe4 is a van der Waals semiconductor with excellent air stability and small cleavage energy, which is suitable for preparing a few layers counterpart to explore novel properties. Here, properties of bulk Nb2SiTe4 with large in-plane electrical anisotropy are demonstrated. It is found that hole carriers dominate at a temperature above 45 K with a carrier active energy of 31.3 meV. The carrier mobility measured at 100 K is about 213 cm2·V-1·s-1 in bulk Nb2SiTe4, higher than the reported results. In a thin flake Nb2SiTe4, the resistivity ratio between the crystalline axes of a and b is reaching about 47.3 at 2.5 K, indicating that there exists a large anisotropic transport behavior in their basal plane. These novel transport properties provide accurate information for modulating or utilizing Nb2SiTe4 for electronic device applications.
Keywords:  carrier mobility      anisotropic transport      Raman spectroscopy  
Received:  09 April 2021      Revised:  08 May 2021      Accepted manuscript online:  29 May 2021
PACS:  72.80.Ga (Transition-metal compounds)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE0202600, 2016YFA0300600, and 2017YFA0304700), by the National Natural Science Foundation of China (Grant Nos. 51922105, 51772322, and 11704401), and Beijing Natural Science Foundation (Grant No. Z200005).
Corresponding Authors:  Jian-Gang Guo, Liwei Guo     E-mail:  jgguo@iphy.ac.cn;lwguo@iphy.ac.cn

Cite this article: 

Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟) Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4 2021 Chin. Phys. B 30 087202

[1] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[2] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[3] Li J H, Yang L, Su S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
[4] Qiao J S, Kong X H, Hu Z X, Yang F and Wei J 2014 Nat. Commun. 5 4475
[5] Ohtomo A and Hwang H Y 2004 Nature 427 423
[6] Wu C C, Shang N Z, Zhao Z X, Zhang Z H, Liang J, Liu C, Zuo Y G, Ding M C, Wang J H, Hong H, Xiong J and Liu K H 2021 Chin. Phys. B 30 027803
[7] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105
[8] Fuhrer M S, Kim B M, Dürkop T and Brintlinger T 2002 Nano Lett. 2 755
[9] Bao W Z, Cai X H, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[10] Buron J D, Pizzocchero F, Jepsen P U, Petersen D H, Caridad J M, Jessen B S, Booth T J and Bφggild P 2015 Sci. Rep. 5 12305
[11] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 232204
[12] Liu B B, Ma P J, Yu W J, Xu Y D and Gao L 2019 Chin. Phys. Lett. 36 064202
[13] Tao R, Li L, Zhu L J, Yan Y D, Guo L H, Fan X D and Zeng C G 2020 Chin. Phys. Lett. 37 077301
[14] Ruan Z L, Hao Z L, Zhang H, Sun S J, Zhang Y, Xiong W, Wang X Y, Lu J C and Cai J M 2021 Chin. Phys. Lett. 38 027201
[15] Wu B L, Wei Q, Zhang Z Q and Jiang H 2021 Chin. Phys. B 30 030504
[16] Zurrón Ó, Picón A and Plaja L 2018 New J. Phys. 20 053033
[17] Gong C, Zhang H J, Wang W H, Colombo L, Wallace R M and Cho K 2013 Appl. Phys. Lett. 103 053513
[18] Wu W, De D, Chang S C, Wang Y N, Peng H B, Bao J M and Pei S S 2013 Appl. Phys. Lett. 102 142106
[19] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011
[20] Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107
[21] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
[22] Zhang S, Wang R, Wang X P, Wei B Y, Chen B, Wang H Q, Shi G, Wang F, Jia B, Ouyang Y P, Xie F J, Fei F C, Zhang M H, Wang X F, Wu D, Wan X G, Song F Q, Zhang H J and Wang B G 2019 Nano Lett. 20 709
[23] Fu H X, Liu C X and Yan B H 2020 Sci. Adv. 6 eaaz0948
[24] Zhao M X, Xia W, Wang Y, Luo M, Tian Z, Guo Y F, Hu W D and Xue J M 2019 ACS Nano 13 10705
[25] Monconduit L, Evain M, Brec R, Rouxel J and Canadell E 1993 Comptes rendus de l'Acadéie des sciences serie II 316 25
[26] Zhang T, Ma Y D, Xu X L, Lei C G, Huang B B and Dai Y 2019 J. Phys. Chem. Lett. 11 497
[27] Fang W Y, Li P A, Yuan J H, Xue K H and Wang J F 2020 J. Electron. Mater. 49 959
[28] Hbivnák E 1960 Czech. J. Phys. B 10 633
[29] Zhou K Y, Deng J, Guo L W and Guo J G 2020 Chin. Phys. Lett. 37 097402
[30] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[31] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36
[32] Gong W T, Li L, Gong P L, Zhou Y L, Zhang Z T, Zhou W C, Wang W K, Liu Z R and Tang D S 2019 Appl. Phys. Lett. 114 172104
[33] See https://www.cryst.ehu.es/rep/sam.html for "IR Raman and Hyper-Raman Modes" (last accessed January 2021)
[34] Liu Y N, Gu Q Q, Peng Y, Qi S M, Zhang N, Zhang Y N, Ma X M, Zhu R, Tong L M, Feng J, Liu Z and Chen J H 2018 Adv. Mater. 30 1706402
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[12] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[13] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[14] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[15] Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲). Chin. Phys. B, 2021, 30(10): 107502.
No Suggested Reading articles found!