|
|
Raman investigation of hydration structure of iodide and iodate |
Zhe Liu(刘喆)1,2, Hong-Liang Zhao(赵洪亮)2,3, Hong-Zhi Lang(郎鸿志)2, Ying Wang(王莹)2, Zhan-Long Li(李占龙)2, Zhi-Wei Men(门志伟)2, Sheng-Han Wang(汪胜晗)1,2,†, and Cheng-Lin Sun(孙成林)1,2,‡ |
1 Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China; 2 Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; 3 College of Aviation Foundation, Aviation University of Air Force, Changchun 130000, China |
|
|
Abstract In the troposphere, the destruction of ozone and the formation of new particles are closely related to the iodine content, which mainly comes from iodide (I-) and iodate (IO3-) in the seawater. Therefore, understanding the interactions between I-, IO3- and water molecules plays a certain role in alleviating the destruction of the ozone layer. Raman spectroscopy is commonly used to obtain the information of the interaction between I-, IO3- and water molecules quickly and accurately. Herein, the effect of I- and IO3- on the change in Raman band characteristics of water is investigated to reflect the associated intermolecular interactions change. With the addition of the two ions, the Raman band corresponding to OH stretching vibration moves towards the high wavenumber, indicating the formation of hydration structure. The narrowing of the Raman band from OH stretching vibration under weak hydrogen bond agrees well with the hydrogen bond variation, while the abnormal broadening of the Raman band from OH stretching vibration under strong hydrogen bond indicates the formation of H-down structure. With the increase of ions concentration, the frequency shift of the Raman band from OH stretching vibration under both weak and strong hydrogen bonds becomes more apparent. Meanwhile, the frequency shift of I- is more obvious than that of IO3-, which indicates that I- is more likely to form the hydration structure with water than IO3-. These results contribute to analyzing the different interactions between I--water and IO3--water, then helping to prevent ozone depletion.
|
Received: 07 December 2020
Revised: 30 January 2021
Accepted manuscript online: 04 February 2021
|
PACS:
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
34.20.Gj
|
(Intermolecular and atom-molecule potentials and forces)
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374123 and 12004132) and Science and Technology Planning Project and Talent Project of Jilin Province, China (Grant Nos. 20170204076GX, 20180101006JC, 20180101238JC, 20190201260JC, 20200201179JC, 2019C0355-5, JJKH20200935KJ, and JJKH20200936KJ) |
Corresponding Authors:
†Corresponding author. E-mail: shenghan@jlu.edu.cn ‡Corresponding author. E-mail: chenglin@jlu.edu.cn
|
Cite this article:
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林) Raman investigation of hydration structure of iodide and iodate 2021 Chin. Phys. B 30 043301
|
1 Sinnhuber B M, Sheode N, Sinnhuber M, Chipperfild M P and Feng W 2009 Atmos. Chem. Phys. 9 2863 2 Galashev A Y 2015 Chin. Phys. B 24 103601 3 von Glasow R 2008 Nature 453 1195 4 Larin I K 2020 Izv. Atmos. Ocean. Phys. 56 165 5 Saiz-Lopez A, PlaneJ M C, Baker A R, Carpenter L J, von Glasow R, Gòmez Mart\'ín J C, McFiggans G and Saunders R W 2012 Chem. Rev. 112 1773 6 Hoffmann T, O'Dowd C D and Seinfeld J H 2001 Geophys. Res. Lett. 28 1949 7 Pillar E A, Guzman M I and Rodriguez J M 2013 Environ. Sci. Technol. 47 10971 8 McFiggans G, Plane J M C, Allan B J, Carpenter L J, Coe H and O'Dowd C 2000 J. Geophys. Res. Atmos. 105 14371 9 Carpenter L J 2003 Chem. Rev. 103 4953 10 Kropman M F and Bakker H J 2004 J. Am. Chem. Soc. 126 9135 11 Kropman M F and Bakker H J 2001 J. Chem. Phys. 115 8942 12 Smith J D, Saykally R J and Geissler P L 2007 J. Am. Chem. Soc. 129 13847 13 Perera P N, Browder B and Ben-Amotz D 2009 J. Phys. Chem. B 113 1805 14 Guo J Q, Zhou L Y, Zen A, Michaelides A, Wu X T, Wang E G, Xu L M and Chen J 2020 Phys. Rev. Lett. 125 106001 15 Duboué-Dijon E, Mason P E, Fischer H E and Jungwirth P 2017 J. Chen. Phys. 146 185102 16 Tung C H, Huang G R, Chang S Y, Han Y, Chen W R and Do C 2020 J. Phys. Chem. Lett. 11 7334 17 Liu J C, Li X, Hou J, Li X and Lu Z 2019 Langmuir 35 7050 18 Lin K, Hu N Y, Zhou X G, Liu S L and Luo Y 2013 Chin. J. Chem. Phys. 26 127 19 Huang X, Cao Z X and Wang Q 2019 Chin. Phys. B 28 065101 20 Gorbaty Y E and Bondarenko G V 2012 Russ. J. Phys. Chem. B 6 873 21 Larouche P, Max J J and Chapados C 2008 J. Chem. Phys. 129 064503 22 Wang S H, Li Z L, Sun C L, Li Z W and Men Z W 2014 Acta Phys. Sin. 63 205204 (in Chinese) 23 Liu Z, Yang B, Zhao H L, Li Z L, Men Z W, Wang X F, Wang N, Cao X W, Wang S H and Sun C L 2019 Chin. Phys. B 28 094206 24 Allen H C, Casillas-Ituarte N N, Sierra-Hernàndez M R, Chen X K and Tang C Y 2009 Phys. Chem. Chem. Phys. 11 5538 25 Nihonyanagi S, Yamaguchi S and Tahara T 2014 J. Am. Chem. Soc. 136 6155 26 Shen H, Hao T and Zhang F S 2015 Chin. Phys. B 24 123601 27 Lv Y Q, Wang X R, Yu X B, Zheng S L, Wang S N, Zhang Y and Du H 2017 Phys. Chem. Chem. Phys. 19 7054 28 Gaigeot M P, Sprik M and Sulpizi M 2012 J. Phys.: Condens. Matter 24 124106 29 Chumaevskii N A and Rodnikova M N 2003 J. Mol. Liq. 106 167 30 Marcus Y 2009 Chem. Rev. 109 1346 31 Omta A W, Kropman M F, Woutersen S and Bakker H J 2003 Science 301 347 32 Gong H D Theoretical Studies on the Hydrations of Iodide and Alkaline Metal Ions (Ph.D. Dissertation) (Dalian: Liaoning Normal University)(in Chinese) 33 Ojha A K, Srivastava S K, Singh R K and Asthana B P 2006 J. Phys. Chem. A 110 9849 34 Devi T G and Upadhayay G 2012 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 91 106 35 Li Z L, Li H D, Fang W H, Wang S H, Sun C L, Li Z W and Men Z W 2015 Opt. Lett. 40 3253 36 Meng S, Xu L F, Wang E G and Gao S W 2002 Phys. Rev. Lett. 89 176104 37 Sokolowska A and Kecki Z 1986 J. Raman Spectrosc. 17 29 38 Schaefer J, Backus E H G, Nagata Y and Bonn M 2016 J. Phys. Chem. Lett. 7 4591 39 Sovago M, Campen R K, Wurpel G W H, Müller M, Bakker H J and Bonn M 2008 Phys. Rev. Lett. 100 173901 40 Saha S, Roy S, Mathi P and Mondal J A 2019 J. Phys. Chem. A 123 2924 41 Besemer M, Bloemenkamp R, Ariese F and van Manen H J 2016 J. Phys. Chem. A 120 709 42 Abe N and Ito M 1978 J. Raman Spectrosc. 7 161 43 Zhao L B, Huang R, Huang Y F, Wu D Y, Ren B and Tian Z Q 2011 J. Chem. Phys. 135 134707 44 Wu D Y, Zhao L B, Liu X M, Huang Y F, Ren B and Tian Z Q 2011 Chem. Commum. 47 2520 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|