Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 043301    DOI: 10.1088/1674-1056/abe2fa
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Raman investigation of hydration structure of iodide and iodate

Zhe Liu(刘喆)1,2, Hong-Liang Zhao(赵洪亮)2,3, Hong-Zhi Lang(郎鸿志)2, Ying Wang(王莹)2, Zhan-Long Li(李占龙)2, Zhi-Wei Men(门志伟)2, Sheng-Han Wang(汪胜晗)1,2,†, and Cheng-Lin Sun(孙成林)1,2,‡
1 Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China; 2 Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; 3 College of Aviation Foundation, Aviation University of Air Force, Changchun 130000, China
Abstract  In the troposphere, the destruction of ozone and the formation of new particles are closely related to the iodine content, which mainly comes from iodide (I-) and iodate (IO3-) in the seawater. Therefore, understanding the interactions between I-, IO3- and water molecules plays a certain role in alleviating the destruction of the ozone layer. Raman spectroscopy is commonly used to obtain the information of the interaction between I-, IO3- and water molecules quickly and accurately. Herein, the effect of I- and IO3- on the change in Raman band characteristics of water is investigated to reflect the associated intermolecular interactions change. With the addition of the two ions, the Raman band corresponding to OH stretching vibration moves towards the high wavenumber, indicating the formation of hydration structure. The narrowing of the Raman band from OH stretching vibration under weak hydrogen bond agrees well with the hydrogen bond variation, while the abnormal broadening of the Raman band from OH stretching vibration under strong hydrogen bond indicates the formation of H-down structure. With the increase of ions concentration, the frequency shift of the Raman band from OH stretching vibration under both weak and strong hydrogen bonds becomes more apparent. Meanwhile, the frequency shift of I- is more obvious than that of IO3-, which indicates that I- is more likely to form the hydration structure with water than IO3-. These results contribute to analyzing the different interactions between I--water and IO3--water, then helping to prevent ozone depletion.
Keywords:  Raman spectroscopy      hydrogen bond      hydration structure  
Received:  07 December 2020      Revised:  30 January 2021      Accepted manuscript online:  04 February 2021
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374123 and 12004132) and Science and Technology Planning Project and Talent Project of Jilin Province, China (Grant Nos. 20170204076GX, 20180101006JC, 20180101238JC, 20190201260JC, 20200201179JC, 2019C0355-5, JJKH20200935KJ, and JJKH20200936KJ)
Corresponding Authors:  Corresponding author. E-mail: shenghan@jlu.edu.cn Corresponding author. E-mail: chenglin@jlu.edu.cn   

Cite this article: 

Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林) Raman investigation of hydration structure of iodide and iodate 2021 Chin. Phys. B 30 043301

1 Sinnhuber B M, Sheode N, Sinnhuber M, Chipperfild M P and Feng W 2009 Atmos. Chem. Phys. 9 2863
2 Galashev A Y 2015 Chin. Phys. B 24 103601
3 von Glasow R 2008 Nature 453 1195
4 Larin I K 2020 Izv. Atmos. Ocean. Phys. 56 165
5 Saiz-Lopez A, PlaneJ M C, Baker A R, Carpenter L J, von Glasow R, Gòmez Mart\'ín J C, McFiggans G and Saunders R W 2012 Chem. Rev. 112 1773
6 Hoffmann T, O'Dowd C D and Seinfeld J H 2001 Geophys. Res. Lett. 28 1949
7 Pillar E A, Guzman M I and Rodriguez J M 2013 Environ. Sci. Technol. 47 10971
8 McFiggans G, Plane J M C, Allan B J, Carpenter L J, Coe H and O'Dowd C 2000 J. Geophys. Res. Atmos. 105 14371
9 Carpenter L J 2003 Chem. Rev. 103 4953
10 Kropman M F and Bakker H J 2004 J. Am. Chem. Soc. 126 9135
11 Kropman M F and Bakker H J 2001 J. Chem. Phys. 115 8942
12 Smith J D, Saykally R J and Geissler P L 2007 J. Am. Chem. Soc. 129 13847
13 Perera P N, Browder B and Ben-Amotz D 2009 J. Phys. Chem. B 113 1805
14 Guo J Q, Zhou L Y, Zen A, Michaelides A, Wu X T, Wang E G, Xu L M and Chen J 2020 Phys. Rev. Lett. 125 106001
15 Duboué-Dijon E, Mason P E, Fischer H E and Jungwirth P 2017 J. Chen. Phys. 146 185102
16 Tung C H, Huang G R, Chang S Y, Han Y, Chen W R and Do C 2020 J. Phys. Chem. Lett. 11 7334
17 Liu J C, Li X, Hou J, Li X and Lu Z 2019 Langmuir 35 7050
18 Lin K, Hu N Y, Zhou X G, Liu S L and Luo Y 2013 Chin. J. Chem. Phys. 26 127
19 Huang X, Cao Z X and Wang Q 2019 Chin. Phys. B 28 065101
20 Gorbaty Y E and Bondarenko G V 2012 Russ. J. Phys. Chem. B 6 873
21 Larouche P, Max J J and Chapados C 2008 J. Chem. Phys. 129 064503
22 Wang S H, Li Z L, Sun C L, Li Z W and Men Z W 2014 Acta Phys. Sin. 63 205204 (in Chinese)
23 Liu Z, Yang B, Zhao H L, Li Z L, Men Z W, Wang X F, Wang N, Cao X W, Wang S H and Sun C L 2019 Chin. Phys. B 28 094206
24 Allen H C, Casillas-Ituarte N N, Sierra-Hernàndez M R, Chen X K and Tang C Y 2009 Phys. Chem. Chem. Phys. 11 5538
25 Nihonyanagi S, Yamaguchi S and Tahara T 2014 J. Am. Chem. Soc. 136 6155
26 Shen H, Hao T and Zhang F S 2015 Chin. Phys. B 24 123601
27 Lv Y Q, Wang X R, Yu X B, Zheng S L, Wang S N, Zhang Y and Du H 2017 Phys. Chem. Chem. Phys. 19 7054
28 Gaigeot M P, Sprik M and Sulpizi M 2012 J. Phys.: Condens. Matter 24 124106
29 Chumaevskii N A and Rodnikova M N 2003 J. Mol. Liq. 106 167
30 Marcus Y 2009 Chem. Rev. 109 1346
31 Omta A W, Kropman M F, Woutersen S and Bakker H J 2003 Science 301 347
32 Gong H D Theoretical Studies on the Hydrations of Iodide and Alkaline Metal Ions (Ph.D. Dissertation) (Dalian: Liaoning Normal University)(in Chinese)
33 Ojha A K, Srivastava S K, Singh R K and Asthana B P 2006 J. Phys. Chem. A 110 9849
34 Devi T G and Upadhayay G 2012 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 91 106
35 Li Z L, Li H D, Fang W H, Wang S H, Sun C L, Li Z W and Men Z W 2015 Opt. Lett. 40 3253
36 Meng S, Xu L F, Wang E G and Gao S W 2002 Phys. Rev. Lett. 89 176104
37 Sokolowska A and Kecki Z 1986 J. Raman Spectrosc. 17 29
38 Schaefer J, Backus E H G, Nagata Y and Bonn M 2016 J. Phys. Chem. Lett. 7 4591
39 Sovago M, Campen R K, Wurpel G W H, Müller M, Bakker H J and Bonn M 2008 Phys. Rev. Lett. 100 173901
40 Saha S, Roy S, Mathi P and Mondal J A 2019 J. Phys. Chem. A 123 2924
41 Besemer M, Bloemenkamp R, Ariese F and van Manen H J 2016 J. Phys. Chem. A 120 709
42 Abe N and Ito M 1978 J. Raman Spectrosc. 7 161
43 Zhao L B, Huang R, Huang Y F, Wu D Y, Ren B and Tian Z Q 2011 J. Chem. Phys. 135 134707
44 Wu D Y, Zhao L B, Liu X M, Huang Y F, Ren B and Tian Z Q 2011 Chem. Commum. 47 2520
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[12] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[13] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[14] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[15] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
No Suggested Reading articles found!