Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117301    DOI: 10.1088/1674-1056/abefc4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy

Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲)
State Key Laboratory of Coal Mine Disaster Dynamics and Control and Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
Abstract  As an ultrasensitive sensing technology, the application of surface enhanced Raman spectroscopy (SERS) is one interesting topic of nano-optics, which has huge application prospectives in plenty of research fields. In recent years, the bottleneck in SERS application could be the fabrication of SERS substrate with excellent enhancement. In this work, a two-dimensional (2D) Ag nanorice film is fabricated by self-assembly method as a SERS substrate. The collected SERS spectra of various molecules on this 2D plasmonic film demonstrate quantitative detection could be performed on this SERS substrate. The experiment data also demonstrate this 2D plasmonic film consisted of anisotropic nanostructures has no obvious SERS polarization dependence. The simulated electric field distribution points out the SERS enhancement comes from the surface plasmon coupling between nanorices. And the SERS signals is dominated by molecules adsorbed at different regions of nanorice surface at various wavelengths, which could be a good near IR SERS substrate for bioanalysis. Our work not only enlarges the surface plasmon properties of metal nanostructure, but also exhibits the good application prospect in SERS related fields.
Keywords:  surface plasmon      surface-enhanced Raman spectroscopy (SERS)      nanorice      2D plasmonic film  
Received:  05 February 2021      Revised:  13 March 2021      Accepted manuscript online:  18 March 2021
PACS:  74.25.nd (Raman and optical spectroscopy)  
  78.30.-j (Infrared and Raman spectra)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974067), Natural Science Foundation Project of CQ CSTC (Grant Nos. cstc2019jcyj-msxmX0145, cstc2019jcyj-bshX0042, and cstc2019jcyj-msxmX0828), and Sharing Fund of Chongqing University & Large-scale Equipment.
Corresponding Authors:  Xiaonan Sun, Yingzhou Huang     E-mail:  xnsun168@cqu.edu.cn;yzhuang@cqu.edu.cn

Cite this article: 

Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲) Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy 2021 Chin. Phys. B 30 117301

[1] Yang Y, Zhang G and Dai X 2020 Chin. Phys. B 29 057302
[2] Liu T, Hao J, Wan F, Huang Y, Su X, Hu L, Chen W and Fang Y 2016 J. Phys. Chem. C 120 7778
[3] Wang L, Zeng X, Liu T, Zhang X, Wei H, Huang Y, Liu A, Wang S and Wen W 2016 J. Phys. D: Appl. Phys. 49 425301
[4] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[5] Yang R, Cheng Y, Song Y, Belotelov V I and Sun M 2021 Chem. Rec. 21 797
[6] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
[7] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Nat. Rev. Mater. 2 14
[8] Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R and Ren B 2018 Chem. Rev. 118 4946
[9] Mu J J, He C Y, Sun W J and Guan Y 2019 Chin. Phys. B 28 124204
[10] Zhou J, Zhang J S, Xian G Y, Qi Q, Gu S Z, Shen C M, Cheng Z H, He S T and Yang H T 2019 Chin. Phys. B 28 083301
[11] Langer J, de Aberasturi D J, Aizpurua J, et al. 2020 ACS Nano 14 28
[12] Wang Y, Wang M, Shen L, Zhu Y, Sun X, Shi G, Xu X, Li R and Ma W 2018 Chin. Phys. B 27 017801
[13] Pu H, Huang Z, Xu F and Sun D W 2021 Food Chem. 343 1 28548
[14] Li Y, Li Y, Duan J, Hou J, Hou Q, Yang Y, Li H and Ai S 2021 Microchem. J. 161 105790
[15] Kim J, Kim J, Choi H, Lee S, Jim B, Yu K, Kuk E, Kim Y, Jeong D, Cho M and Lee Y 2006 Anal. Chem. 2 317
[16] Lin S C, Zhang X, Zhao W C, Chen Z Y, Du P, Zhao Y M, Wu Z L and Xu H J 2018 Chin. Phys. B 27 028707
[17] Zhang X, Zhang H, Yan S, Zeng Z, Huang A, Liu A, Yuan Y and Huang Y 2019 Sci. Rep. 9 17634
[18] Tian Y, Wang H F, Yan L Q, Zhang X F, Falak A, Chen P P, Dong F L, Sun L F and Chu W G 2018 Chin. Phys. B 27 077406
[19] Yang S, Dai X, Stogin B B and Wong T S 2016 Proc. Natl. Acad. Sci. USA 113 268
[20] Huang J A, Mousavi M Z, Zhao Y, Hubarevich A, Omeis F, Giovannini G, Schuette M, Garoli D and De Angelis F 2019 Nat. Commun. 10 5321
[21] Steuwe C, Erdelyi M, Szekeres G, Csete M, Baumberg J J, Mahajan S and Kaminski C F 2015 Nano Lett. 15 3217
[22] Yang G, Nanda J, Wang B, Chen G and Jr. Hallinan D T 2017 ACS Appl. Mater. Inter. 9 13457
[23] Portales H, Goubet N, Sirotkin S, Duval E, Mermet A, Albouy P A and Pileni M P 2012 Nano Lett. 12 5292
[24] Ye Z, Sun G, Sui C, Yan B, Gao F, Cai P, Lv B, Li Y, Chen N, Xu F, Wang K, Ye G and Yang S 2018 Nanotechnology 29 375502
[25] Zhao X, Wen J, Zhu A, Cheng M, Zhu Q, Zhang X, Wang Y and Zhang Y 2020 Nanomaterials (Basel) 10 1667
[26] Shen Q, Wu H, Wang H, Zhao Q, Xue J, Ma J and Wang H 2021 Food Chem. 344 128585
[27] Pu H, Huang Z, Xu F and Sun D W 2021 Food Chem. 343 128548
[28] Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649
[29] Liang H, Zhao H, Rossouw D, Wang W, Xu H, Botton G A and Ma D 2012 Chemistry Mater. 24 2339
[30] Hu L, Huang Y, Fang L, Chen G, Wei H and Fang Y 2015 Sci. Rep. 5 16069
[31] Tian X, Fang Y and Zhang B 2014 ACS Photon. 1 1156
[32] Liang H Y, Yang H X, Wang W Z, Li J Q and Xu H X 2009 J. Am. Chem. Soc. 131 6068
[33] Liu J, Li J, Li F, Zhou Y, Hu X, Xu T and Xu W 2018 Anal. Bioanal. Chem. 410 5277
[34] Pan L, Huang Y, Yang Y, Xiong W, Chen G, Su X, Wei H, Wang S and Wen W 2015 Sci. Rep. 5 17223
[35] Nie X, Chen Z, Tian Y, Chen S, Qu L and Fan M 2021 Food Chem. 340 127930
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!