CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy |
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠)†, and Yingzhou Huang(黄映洲)‡ |
State Key Laboratory of Coal Mine Disaster Dynamics and Control and Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China |
|
|
Abstract As an ultrasensitive sensing technology, the application of surface enhanced Raman spectroscopy (SERS) is one interesting topic of nano-optics, which has huge application prospectives in plenty of research fields. In recent years, the bottleneck in SERS application could be the fabrication of SERS substrate with excellent enhancement. In this work, a two-dimensional (2D) Ag nanorice film is fabricated by self-assembly method as a SERS substrate. The collected SERS spectra of various molecules on this 2D plasmonic film demonstrate quantitative detection could be performed on this SERS substrate. The experiment data also demonstrate this 2D plasmonic film consisted of anisotropic nanostructures has no obvious SERS polarization dependence. The simulated electric field distribution points out the SERS enhancement comes from the surface plasmon coupling between nanorices. And the SERS signals is dominated by molecules adsorbed at different regions of nanorice surface at various wavelengths, which could be a good near IR SERS substrate for bioanalysis. Our work not only enlarges the surface plasmon properties of metal nanostructure, but also exhibits the good application prospect in SERS related fields.
|
Received: 05 February 2021
Revised: 13 March 2021
Accepted manuscript online: 18 March 2021
|
PACS:
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
36.20.Ng
|
(Vibrational and rotational structure, infrared and Raman spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974067), Natural Science Foundation Project of CQ CSTC (Grant Nos. cstc2019jcyj-msxmX0145, cstc2019jcyj-bshX0042, and cstc2019jcyj-msxmX0828), and Sharing Fund of Chongqing University & Large-scale Equipment. |
Corresponding Authors:
Xiaonan Sun, Yingzhou Huang
E-mail: xnsun168@cqu.edu.cn;yzhuang@cqu.edu.cn
|
Cite this article:
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲) Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy 2021 Chin. Phys. B 30 117301
|
[1] Yang Y, Zhang G and Dai X 2020 Chin. Phys. B 29 057302 [2] Liu T, Hao J, Wan F, Huang Y, Su X, Hu L, Chen W and Fang Y 2016 J. Phys. Chem. C 120 7778 [3] Wang L, Zeng X, Liu T, Zhang X, Wei H, Huang Y, Liu A, Wang S and Wen W 2016 J. Phys. D: Appl. Phys. 49 425301 [4] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 [5] Yang R, Cheng Y, Song Y, Belotelov V I and Sun M 2021 Chem. Rec. 21 797 [6] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882 [7] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Nat. Rev. Mater. 2 14 [8] Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R and Ren B 2018 Chem. Rev. 118 4946 [9] Mu J J, He C Y, Sun W J and Guan Y 2019 Chin. Phys. B 28 124204 [10] Zhou J, Zhang J S, Xian G Y, Qi Q, Gu S Z, Shen C M, Cheng Z H, He S T and Yang H T 2019 Chin. Phys. B 28 083301 [11] Langer J, de Aberasturi D J, Aizpurua J, et al. 2020 ACS Nano 14 28 [12] Wang Y, Wang M, Shen L, Zhu Y, Sun X, Shi G, Xu X, Li R and Ma W 2018 Chin. Phys. B 27 017801 [13] Pu H, Huang Z, Xu F and Sun D W 2021 Food Chem. 343 1 28548 [14] Li Y, Li Y, Duan J, Hou J, Hou Q, Yang Y, Li H and Ai S 2021 Microchem. J. 161 105790 [15] Kim J, Kim J, Choi H, Lee S, Jim B, Yu K, Kuk E, Kim Y, Jeong D, Cho M and Lee Y 2006 Anal. Chem. 2 317 [16] Lin S C, Zhang X, Zhao W C, Chen Z Y, Du P, Zhao Y M, Wu Z L and Xu H J 2018 Chin. Phys. B 27 028707 [17] Zhang X, Zhang H, Yan S, Zeng Z, Huang A, Liu A, Yuan Y and Huang Y 2019 Sci. Rep. 9 17634 [18] Tian Y, Wang H F, Yan L Q, Zhang X F, Falak A, Chen P P, Dong F L, Sun L F and Chu W G 2018 Chin. Phys. B 27 077406 [19] Yang S, Dai X, Stogin B B and Wong T S 2016 Proc. Natl. Acad. Sci. USA 113 268 [20] Huang J A, Mousavi M Z, Zhao Y, Hubarevich A, Omeis F, Giovannini G, Schuette M, Garoli D and De Angelis F 2019 Nat. Commun. 10 5321 [21] Steuwe C, Erdelyi M, Szekeres G, Csete M, Baumberg J J, Mahajan S and Kaminski C F 2015 Nano Lett. 15 3217 [22] Yang G, Nanda J, Wang B, Chen G and Jr. Hallinan D T 2017 ACS Appl. Mater. Inter. 9 13457 [23] Portales H, Goubet N, Sirotkin S, Duval E, Mermet A, Albouy P A and Pileni M P 2012 Nano Lett. 12 5292 [24] Ye Z, Sun G, Sui C, Yan B, Gao F, Cai P, Lv B, Li Y, Chen N, Xu F, Wang K, Ye G and Yang S 2018 Nanotechnology 29 375502 [25] Zhao X, Wen J, Zhu A, Cheng M, Zhu Q, Zhang X, Wang Y and Zhang Y 2020 Nanomaterials (Basel) 10 1667 [26] Shen Q, Wu H, Wang H, Zhao Q, Xue J, Ma J and Wang H 2021 Food Chem. 344 128585 [27] Pu H, Huang Z, Xu F and Sun D W 2021 Food Chem. 343 128548 [28] Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649 [29] Liang H, Zhao H, Rossouw D, Wang W, Xu H, Botton G A and Ma D 2012 Chemistry Mater. 24 2339 [30] Hu L, Huang Y, Fang L, Chen G, Wei H and Fang Y 2015 Sci. Rep. 5 16069 [31] Tian X, Fang Y and Zhang B 2014 ACS Photon. 1 1156 [32] Liang H Y, Yang H X, Wang W Z, Li J Q and Xu H X 2009 J. Am. Chem. Soc. 131 6068 [33] Liu J, Li J, Li F, Zhou Y, Hu X, Xu T and Xu W 2018 Anal. Bioanal. Chem. 410 5277 [34] Pan L, Huang Y, Yang Y, Xiong W, Chen G, Su X, Wei H, Wang S and Wen W 2015 Sci. Rep. 5 17223 [35] Nie X, Chen Z, Tian Y, Chen S, Qu L and Fan M 2021 Food Chem. 340 127930 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|