Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066501    DOI: 10.1088/1674-1056/abd7d4

Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate

Dongxia Chen(陈冬霞)1, Qiang Sun(孙强)2, Zhanjun Yu(于占军)1, Mingyu Li(李明玉)1, Juan Guo(郭娟)2, Mingju Chao(晁明举)2, and Erjun Liang(梁二军)2,†
1 School of Materials Science & Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;
2 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  We experimentally investigate effects of W6+ occupying the sites of Sc3+ in the unit cell of Sc2W3O12 (Sc8W12O48) on the structure, vibration and thermal expansion. The composition and structure of the doped sample (Sc6W2)W12O48±δ (with two W6+ occupying two sites of Sc3+ in the unit cell of Sc8W12O48) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W6+ occupying even Sc3+ in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc2W3O12, and with even W occupying even positions of Sc in the unit cell and constituting the WO6 octahedra. Raman analyses show that the doped sample possesses stronger W-O bonds and wider Raman linewidths than those of Sc2W3O12. The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K-650 K.
Keywords:  structure      negative thermal expansion      Raman spectroscopy  
Received:  14 December 2020      Revised:  30 December 2020      Accepted manuscript online:  04 January 2021
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.-f (Structure of specific crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Science Foundation of China (Grant Nos. 11574276 and 11874328), the Key Scientific Research Project of Universities in Henan Province (Grant Nos. 20B140018, 20A510012, and 19A140019), Key Scientific and Technological Project of Henan Province (Grant Nos. 202102210110, 182102210451 and 192102210002). The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Grant No. DE-AC02-06CH11357).
Corresponding Authors:  Erjun Liang     E-mail:

Cite this article: 

Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军) Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate 2021 Chin. Phys. B 30 066501

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Turquat C, Muller C, Nigrelli E, Leroux C and Nihoul G 2000 Eur. Phys. J. AP 10 15
[3] Maczka M, Hermanowicz K and Hanuza J 2005 J. Mol. Struct. 744-747 283
[4] Liu Q, Fan C, Wu G, Zhao Y, Sun X, Cheng X, Shen J and Hu Y 2015 Ceram. Int. 41 8267
[5] Liu Q Q, Cheng X N and Yang J 2012 Mater. Technol. 27 388
[6] Tyagi A K, Achary S N and Mathews M D 2002 J. Alloys Compd. 339 207
[7] Sleight A W and Brixner L H 1973 J. Solid State Chem. 7 172
[8] Sumithra S and Umarji A M 2004 Solid State Sci. 6 1313
[9] Marinkovic B A, Jardim P M, de Avillez R R and Rizzo F 2005 Solid State Sci. 7 1377
[10] Sumithra S and Umarji A M 2005 Mater. Res. Bull. 40 167
[11] Miller K J, Romao C P, Bieringer M, Marinkovic B A, Prisco L and White M A 2013 J. Am. Ceram. Soc. 96 561
[12] Liu X, Cheng Y, Liang E and Chao M 2014 Phys. Chem. Chem. Phys. 16 12848
[13] Li Z, Song W and Liang E 2011 J. Phys. Chem. C 115 17806
[14] Li F, Liu X, Song W, Yuan B, Cheng Y, Yuan H, Cheng F, Chao M and liang E 2014 J. Solid State Chem. 218 15
[15] Hanuza J, Maczka M, Hermanowicz K, Andruszkiewicz M, Pietraszko A, Strek W and Dereń P 1993 J. Solid State Chem. 105 49
[16] Ge X, Mao Y, Li L, Li L, Yuan N, Cheng Y, Guo J, Chao M and Liang E 2016 Chin. Phys. Lett. 33 046503
[17] Ari M, Jardim P M, Marinkovic B A, Rizzo F and Ferreira F F 2008 J. Solid State Chem. 181 1472
[18] Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H and Liang E J 2014 Chin. Phys. B 23 066501
[19] Wu M M, Xiao X L, Hu Z B, Liu Y T and Chen D F 2009 Solid State Sci. 11 325
[20] Chen J, Xing X, Yu R and Liu G 2005 J. Am. Ceram. Soc. 88 1356
[21] Sun C, Cao Z, Chen J, Yu R, Sun X, Hu P, Liu G and Xing X 2008 Phys. Status Solidi 245 2520
[22] Chen J, Xing X R, Liu G R, Li J H and Liu Y T 2006 Appl. Phys. Lett. 89 101914
[23] Sun Y, Wang C, Wen Y, Zhu K and Zhao J 2007 Appl. Phys. Lett. 91 231913
[24] Takenaka K, Asano K, Misawa M and Takagi H 2008 Appl. Phys. Lett. 92 011927
[25] Wang C, Sun Y, Wen Y C, Chu L H and Nie M 2010 Mater. Sci. Forum 638-642 2195
[26] Wang X, Huang Q, Deng J, Yu R, Chen J and Xing X 2011 Inorg. Chem. 50 2685
[27] Sebastian L, Sumithra S, Manjanna J, Umarji A M and Gopalakrishnan J 2003 Mater. Sci. Eng. B 103 289
[28] Fallon G D and Gatehouse B M 1982 J. Solid State Chem. 44 156
[29] Naruke H and Yamase T 2003 J. Solid State Chem. 173 407
[30] Shi N, Sanson A, Gao Q, Sun Q and Chen J 2020 J. Am. Chem. Soc. 142 3088
[31] Shi N, Gao Q, Sanson A, Li Q, Fan L, Ren Y, Olivi L, Chen J and Xing X 2019 Dalton Trans. 48 3658
[32] Wang C, Chang D, Gao Q, Liu C, Wang Q, Huang X and Jia Y 2020 Phys. Chem. Chem. Phys. 22 18655
[33] Gao Q, Sun Y, Shi N, Milazzo R and Chen J 2020 Scr. Mater. 187 119
[34] Chen J, Gao Q, Sun Q, Chang D, Huang Q, Wu H, Sanson A, Milazzo R, Zhu H and Li Q 2017 Angew. Chem. 129 9031
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[37] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Evans J, Mary T and Sleight A 1998 J. Solid State Chem. 137 148
[39] Paraguassu W, Maczka M, Filho A G S, Freire P T C, Melo F E A, Filho J M and Hanuza J 2007 Vib. Spectrosc. 44 69
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[10] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[11] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[12] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[13] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[14] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[15] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
No Suggested Reading articles found!