Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107502    DOI: 10.1088/1674-1056/ac041f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-phonon coupling in van der Waals antiferromagnet VOCl

Wen-Jun Wang(王文君)1,2, Xi-Tong Xu(许锡童)1,3, Jie Shen(沈洁)1,2, Zhe Wang(王哲)1,2, Shi-Le Zhang(张仕乐)1, and Zhe Qu(屈哲)1,3,†
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3 CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We report magnetization and Raman spectroscopy study on single crystals of VOCl, a van der Waals antiferromagnetic material. Magnetization measurement confirms an antiferromagnetic transition at 79 K and a magnetic easy axis along crystallographic a direction. The temperature-dependent Raman spectrum reveals five peaks at 30 K. Below the Neel temperature TN, the Raman-active modes 247 cm-1 and 404 cm-1 remarkably deviate from the standard Boltzmann function, which is ascribed to the strong magnetoelastic coupling between spins and phonons. We further observe an anomaly in 383 cm-1 mode at around 150 K. This coincides with the broad maximum in VOCl's magnetic susceptibility, suggesting a development of short-ranged magnetic order at this temperature.
Keywords:  vdW material      2D magnetism      Raman spectroscopy      spin-phonon coupling  
Received:  11 February 2021      Revised:  08 March 2021      Accepted manuscript online:  24 May 2021
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  78.30.-j (Infrared and Raman spectra)  
  63.20.-e (Phonons in crystal lattices)  
  96.15.Gh (Magnetic field and magnetism)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032213, U1832214, and 11774352).
Corresponding Authors:  Zhe Qu     E-mail:  zhequ@hmfl.ac.cn

Cite this article: 

Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲) Spin-phonon coupling in van der Waals antiferromagnet VOCl 2021 Chin. Phys. B 30 107502

[1] Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K and Tiwary C S 2019 Mater. Today 27 107
[2] Moriya T, Takahashi Y and Ueda K 1990 J. Phys. Soc. Jpn. 59 2905
[3] Birgeneau R, Aharony A, Belk N, Chou F, Endoh Y, Greven M, Hosoya S, Kastner M, Lee C and Lee Y 1995 J. Phys. Chem. Solids 56 1913
[4] Siegmann H 1992 J. Phys.: Condens. Matter 4 8395
[5] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251
[6] Freeman A J and Fu C 1987 J. Appl. Phys. 61 3356
[7] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[8] Gong C, Li L, Li Z, et al. 2017 Nature 546 265
[9] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270
[10] Zhong D, Seyler K L, Linpeng X, et al. 2017 Sci. Adv. 3 e1603113
[11] Wang Z, Zhang T, Ding M, et al. 2018 Nat. Nanotechnol. 13 554
[12] Wang X R, Si Y and Zhang R 2013 Chin. Phys. B 22 098505
[13] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[14] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695
[15] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601
[16] Song K, Soriano D, Cummings A W, Robles R, Ordejón P and Roche S 2018 Nano Lett. 18 2033
[17] Liang F, Xu H, Wu X, Wang C, Luo C and Zhang J 2018 Chin. Phys. B 27 037802
[18] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417
[19] Rückamp R, Baier J, Kriener M, Haverkort M, Lorenz T, Uhrig G, Jongen L, Möller A, Meyer G and Grüninger M 2005 Phys. Rev. Lett. 95 097203
[20] Kauzlarich S, Ellena J, Stupik P, Rieff W and Averill B 1987 J. Am. Chem. Soc. 109 4561
[21] Angelkort J, Wölfel A, Schönleber A, van Smaalen S and Kremer R K 2009 Phys. Rev. B 80 144416
[22] Wiedenmann A, Rossat-Mignod J, Venien J and Palvadeau P 1984 J. Magn. Magn. Mater. 45 275
[23] Schönleber A, Shcheka G and van Smaalen S 2008 Phys. Rev. B 77 094117
[24] Komarek A, Taetz T, Fernández-Díaz M, Trots D, Möller A and Braden M 2009 Phys. Rev. B 79 104425
[25] Grant R 1971 J. Appl. Phys. 42 1619
[26] May A F, Yan J and McGuire M A 2020 J. Appl. Phys. 128 051101
[27] Schönleber A, Angelkort J, van Smaalen S, Palatinus L, Senyshyn A and Morgenroth W 2009 Phys. Rev. B 80 064426
[28] Wiedenmann A, Venien J, Palvadeau P and Rossat-Mignod J 1983 J. Phys. C: Solid State Phys. 16 5339
[29] Riera J and Dobry A 1995 Phys. Rev. B 51 16098
[30] Matsuda M and Katsumata K 1996 Phys. Rev. B 53 12201
[31] Okabe H, Suzuki K, Kawashima K, Muranaka T and Akimitsu J 2006 J. Phys. Soc. Jpn. 75 123705
[32] Lines M 1970 J. Phys. Chem. Solids 31 101
[33] Zhang T, Wang Y, Li H, et al. 2019 ACS Nano 13 11353
[34] Gao P, Lin X M, Reddy M A, Zhang L, Diemant T, Behm R J and Fichtner M 2016 J. Electrochem. Soc. 163 A2326
[35] Mishra K, Shukla R, Krishna P, Babu P, Achary S, Katiyar R and Scott J 2020 Phys. Chem. Chem. Phys. 22 6906
[36] Fennie C J and Rabe K M 2006 Phys. Rev. Lett. 96 205505
[37] Casto L, Clune A, Yokosuk M, et al. 2015 APL Mater. 3 041515
[38] Tian Y, Gray M J, Ji H, Cava R and Burch K S 2016 2D Mater. 3 025035
[39] Glamazda A, Lemmens P, Do S H, Kwon Y and Choi K Y 2017 Phys. Rev. B 95 174429
[40] Wahish A, O'Neal K, Lee C, et al. 2017 Phys. Rev. B 95 104437
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[4] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[8] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[9] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[10] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[11] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[12] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[13] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[14] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[15] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
No Suggested Reading articles found!