Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君)1,2, Xi-Tong Xu(许锡童)1,3, Jie Shen(沈洁)1,2, Zhe Wang(王哲)1,2, Shi-Le Zhang(张仕乐)1, and Zhe Qu(屈哲)1,3,†
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China
Abstract We report magnetization and Raman spectroscopy study on single crystals of VOCl, a van der Waals antiferromagnetic material. Magnetization measurement confirms an antiferromagnetic transition at 79 K and a magnetic easy axis along crystallographic a direction. The temperature-dependent Raman spectrum reveals five peaks at 30 K. Below the Neel temperature TN, the Raman-active modes 247 cm-1 and 404 cm-1 remarkably deviate from the standard Boltzmann function, which is ascribed to the strong magnetoelastic coupling between spins and phonons. We further observe an anomaly in 383 cm-1 mode at around 150 K. This coincides with the broad maximum in VOCl's magnetic susceptibility, suggesting a development of short-ranged magnetic order at this temperature.
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲) Spin-phonon coupling in van der Waals antiferromagnet VOCl 2021 Chin. Phys. B 30 107502
[1] Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K and Tiwary C S 2019 Mater. Today27 107 [2] Moriya T, Takahashi Y and Ueda K 1990 J. Phys. Soc. Jpn.59 2905 [3] Birgeneau R, Aharony A, Belk N, Chou F, Endoh Y, Greven M, Hosoya S, Kastner M, Lee C and Lee Y 1995 J. Phys. Chem. Solids56 1913 [4] Siegmann H 1992 J. Phys.: Condens. Matter4 8395 [5] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett.17 5251 [6] Freeman A J and Fu C 1987 J. Appl. Phys.61 3356 [7] Mermin N D and Wagner H 1966 Phys. Rev. Lett.17 1133 [8] Gong C, Li L, Li Z, et al. 2017 Nature546 265 [9] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature546 270 [10] Zhong D, Seyler K L, Linpeng X, et al. 2017 Sci. Adv.3 e1603113 [11] Wang Z, Zhang T, Ding M, et al. 2018 Nat. Nanotechnol.13 554 [12] Wang X R, Si Y and Zhang R 2013 Chin. Phys. B22 098505 [13] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol.13 549 [14] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano6 1695 [15] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett.119 206601 [16] Song K, Soriano D, Cummings A W, Robles R, Ordejón P and Roche S 2018 Nano Lett.18 2033 [17] Liang F, Xu H, Wu X, Wang C, Luo C and Zhang J 2018 Chin. Phys. B27 037802 [18] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc.140 2417 [19] Rückamp R, Baier J, Kriener M, Haverkort M, Lorenz T, Uhrig G, Jongen L, Möller A, Meyer G and Grüninger M 2005 Phys. Rev. Lett.95 097203 [20] Kauzlarich S, Ellena J, Stupik P, Rieff W and Averill B 1987 J. Am. Chem. Soc.109 4561 [21] Angelkort J, Wölfel A, Schönleber A, van Smaalen S and Kremer R K 2009 Phys. Rev. B80 144416 [22] Wiedenmann A, Rossat-Mignod J, Venien J and Palvadeau P 1984 J. Magn. Magn. Mater.45 275 [23] Schönleber A, Shcheka G and van Smaalen S 2008 Phys. Rev. B77 094117 [24] Komarek A, Taetz T, Fernández-Díaz M, Trots D, Möller A and Braden M 2009 Phys. Rev. B79 104425 [25] Grant R 1971 J. Appl. Phys.42 1619 [26] May A F, Yan J and McGuire M A 2020 J. Appl. Phys.128 051101 [27] Schönleber A, Angelkort J, van Smaalen S, Palatinus L, Senyshyn A and Morgenroth W 2009 Phys. Rev. B80 064426 [28] Wiedenmann A, Venien J, Palvadeau P and Rossat-Mignod J 1983 J. Phys. C: Solid State Phys.16 5339 [29] Riera J and Dobry A 1995 Phys. Rev. B51 16098 [30] Matsuda M and Katsumata K 1996 Phys. Rev. B53 12201 [31] Okabe H, Suzuki K, Kawashima K, Muranaka T and Akimitsu J 2006 J. Phys. Soc. Jpn.75 123705 [32] Lines M 1970 J. Phys. Chem. Solids31 101 [33] Zhang T, Wang Y, Li H, et al. 2019 ACS Nano13 11353 [34] Gao P, Lin X M, Reddy M A, Zhang L, Diemant T, Behm R J and Fichtner M 2016 J. Electrochem. Soc.163 A2326 [35] Mishra K, Shukla R, Krishna P, Babu P, Achary S, Katiyar R and Scott J 2020 Phys. Chem. Chem. Phys.22 6906 [36] Fennie C J and Rabe K M 2006 Phys. Rev. Lett.96 205505 [37] Casto L, Clune A, Yokosuk M, et al. 2015 APL Mater.3 041515 [38] Tian Y, Gray M J, Ji H, Cava R and Burch K S 2016 2D Mater.3 025035 [39] Glamazda A, Lemmens P, Do S H, Kwon Y and Choi K Y 2017 Phys. Rev. B95 174429 [40] Wahish A, O'Neal K, Lee C, et al. 2017 Phys. Rev. B95 104437
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.