Special Issue:
SPECIAL TOPIC — Twistronics
|
|
|
Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices |
J A Crosse1,2 and Pilkyung Moon1,2,3,† |
1 Arts and Sciences, New York University Shanghai, Shanghai 200122, China; 2 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China; 3 Department of Physics, New York University, New York 10003, USA |
|
|
Abstract We study the magneto-optical conductivity of a number of van der Waals heterostructures, namely, twisted bilayer graphene, AB-AB and AB-BA stacked twisted double bilayer graphene and monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride. As the magnetic field increases, the absorption spectrum exhibits a self-similar recursive pattern reflecting the fractal nature of the energy spectrum. Whilst twisted bilayer graphene displays only weak circular dichroism, the other four structures display strong circular dichroism with monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride being particularly pronounced owing to strong inversion symmetry breaking properties of the hexagonal boron nitride layer. As the left and right circularly polarized light interact with these structures differently, plane-polarized incident light undergoes a Faraday rotation and gains an ellipticity when transmitted. The size of the respective angles is on the order of a degree.
|
Received: 19 February 2021
Revised: 21 May 2021
Accepted manuscript online: 26 May 2021
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050410228 and 12074260) and the Fund from the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19ZR1436400). |
Corresponding Authors:
Pilkyung Moon
E-mail: pilkyung.moon@nyu.edu
|
Cite this article:
J A Crosse and Pilkyung Moon Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices 2021 Chin. Phys. B 30 077803
|
[1] Geim A K and Grigorieva I V 2013 Nature 499 419 [2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [3] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042 [4] Li C, Zhou P and Zhang D W 2017 J. Semicond. 38 031005 [5] Yankowitz M, Ma Q, Jarillo-Herrero P and LeRoy B J 2019 Nat. Rev. Phys. 1 112 [6] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308 [7] Nedoliuk I O, Hu S, Geim A K and Kuzmenko A B 2019 Nat. Nanotechnol. 14 756 [8] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48 [9] Liu J and Dai X 2020 Npj Comput. Mater. 6 57 [10] Hofstadter D 1976 Phys. Rev. B 14 2239 [11] Rammal R 1985 J. Physique 46 1345 [12] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411 [13] Moon P and Koshino M 2012 Phys. Rev. B 85 195458 [14] Moon P and Koshino M 2014 Phys. Rev. B 90 155406 [15] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427 [16] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, MuchaKruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I and Geim A K 2013 Nature 497 594 [17] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [18] Yu G L, Gorbachev R V, Tu J S, Kretinin A V, Cao Y, Jalil R, Withers F, Ponomarenko L A, Piot B A, Potemski M, Elias D C, Chen X, Watanabe K, Taniguchi T, Grigorieva I V, Novoselov K S, Fal’ko V I, Geim A K and Mishchenko A 2014 Nat. Phys. 10 525 [19] Moon P and Koshino M 2013 Phys. Rev. B 88 241412(R) [20] Crosse J A, Nakatsuji N, Koshino M and Moon P 2020 Phys. Rev. B 102 035421 [21] Schaibley J, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [22] Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F and Chang K 2015 Sci. Rep. 5 12295 [23] Lopes dos Santos J, Peres N and Castro Neto A 2007 Phys. Rev. Lett. 99 256802 [24] Bistritzer R and MacDonald A 2011 Proc. Natl. Acad. Sci. 108 12233 [25] Kindermann M and First P 2011 Phys. Rev. B 83 045425 [26] Lopes dos Santos J, Peres N M R and Castro Neto A H 2012 Phys. Rev. B 86 1554499 [27] Moon P and Koshino M 2013 Phys. Rev. B 87 205404 [28] Koshino M 2015 New J. Phys. 17 015014 [29] Koshino M and Moon P 2015 J. Phys. Soc. Jpn. 84 121001 [30] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [31] Koshino M 2019 Phys. Rev. B 99 235406 [32] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503 [33] Brown E 1969 Solid State Phys. 22 313 [34] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010 [35] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [36] Ando T 2005 J. Phys. Soc. Jpn. 74 777 [37] Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421 [38] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420 [39] Pfannkuche D and Gerhardts R R 1992 Phys. Rev. B 46 12606 [40] Inoue M 1962 J. Phys. Soc. Jpn. 17 808 [41] Toy W, Dresselhaus M and Dresselhaus G 1977 Phys. Rev. B 15 4077 [42] Chiu K W, Lee T K, and Quinn J J 1976 Surf. Sci. 58 182 [43] O’Connell R F and Wallace G 1982 Phys. Rev. B 26 2231 [44] Morimoto T, Hatsugai Y and Aoki H 2009 Phys. Rev. Lett. 103 116803 [45] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417 [46] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [47] Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T and Ensslin K 2019 Nano Lett. 19 8821 [48] Burg G W, Zh Ju, Taniguchi T, Watanabe K MacDonald A H and Tutuc E 2019 Phys. Rev. Lett. 123 197702 [49] Choi Y W and Choi H J 2019 Phys. Rev. B 100 201402 [50] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 5333 [51] Abergel D S L and Fal’ko V I 2007 Phys. Rev. B 75 155430 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|