Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078102    DOI: 10.1088/1674-1056/abf920
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy

Yu-Bin Kang(亢玉彬)1, Feng-Yuan Lin(林逢源)1,†, Ke-Xue Li(李科学)1, Ji-Long Tang(唐吉龙)1,‡, Xiao-Bing Hou(侯效兵)1, Deng-Kui Wang(王登魁)1, Xuan Fang(方铉)1, Dan Fang(房丹)1, Xin-Wei Wang(王新伟)2, and Zhi-Peng Wei(魏志鹏)1
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China;
2 School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
Abstract  The self-catalyzed growth of GaAs nanowires (NWs) on silicon (Si) is an effective way to achieve integration between group Ⅲ-V elements and Si. High-crystallinity uniform GaAs NW arrays were grown by solid-source molecular beam epitaxy (MBE). In this paper, we describe systematic experiments which indicate that the substrate treatment is crucial to the highly crystalline and uniform growth of one-dimensional nanomaterials. The influence of natural oxidation time on the crystallinity and uniformity of GaAs NW arrays was investigated and is discussed in detail. The GaAs NW crystallinity and uniformity are maximized after 20 days of natural oxidation time. This work provides a new solution for producing high-crystallinity uniform Ⅲ-V nanowire arrays on wafer-scale Si substrates. The highly crystalline uniform NW arrays are expected to be useful for NW-based optical interconnects and Si platform optoelectronic devices.
Keywords:  GaAs      nanowire arrays      self-catalyzed      molecular beam epitaxy  
Received:  03 March 2021      Revised:  30 March 2021      Accepted manuscript online:  19 April 2021
PACS:  61.46.-w (Structure of nanoscale materials)  
  07.79.Pk (Magnetic force microscopes)  
  81.10.Bk (Growth from vapor)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, and 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology (Grant No. XQNJJ-2018-18).
Corresponding Authors:  Feng-Yuan Lin, Ji-Long Tang     E-mail:  linfengyuan_0116@163.com;jl_tangcust@163.com

Cite this article: 

Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏) Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy 2021 Chin. Phys. B 30 078102

[1] Tomioka K, Yoshimura M and Fukui T 2012 Nature 488 189
[2] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
[3] Li H L, Chen Y T, Wei Z P and Chen R 2020 Sci. China Mater. 63 1364
[4] Zhu X T, Lin F Y, Zhang Z H, Chen X, Huang H, Wang D K, Tang J L, Fang X, Fang D, Ho J C, Liao L and Wei Z P 2020 Nano Lett. 20 2654
[5] Dimakis E, Jahn U, Ramsteiner M, Tahraoui A, Grandal J, Kong X, Marquardt O, Trampert A, Riechert H and Geelhaar L 2014 Nano Lett. 14 2604
[6] Holm J V, Jorgensen H I, Krogstrup P, Nygard J, Liu H Y and Aagesen M 2013 Nat. Commun. 4 1498
[7] Thelander C, Nilsson H A, Jensen L E and Samuelson L 2005 Nano Lett. 5 635
[8] Wang Y, Zhang Y, Zhang D, He S and Li X 2015 Nanoscale Res. Lett. 10 269
[9] Liang D, Kang Y S, Huo Y J, Chen Y S, Cui Y and Harris J S 2013 Nano Lett. 13 4850
[10] Chen G, Liang B, Liu Z, Yu G, Xie X M, Luo T, Xie Z, Chen D, Zhu M Q and Shen G Z 2014 J. Mater. Chem. C 2 1270
[11] Tomioka K, Motohisa J, Hara S, Hiruma K and Fukui T 2010 Nano Lett. 10 1639
[12] Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E and Patolsky F 2010 Angew. Chem. Int. Ed. 49 6830
[13] Rostgaard K R, Frederiksen R S, Liu Y C, Berthing T, Madsen M H, Holm J, Nygard J and Martinez K L 2013 Nanoscale 5 10226
[14] Hu L and Chen G 2007 Nano Lett. 7 3249
[15] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
[16] Zhang T, Wu S, Zheng R and Cheng G 2015 Nano Energy 13 433
[17] Yu X Z, Li L X, Wang H L, Xiao J X, Shen C, Pan D and Zhao J H 2016 Nanoscale 8 10615
[18] Matteini F, Tütüncüoglu G, Potts H, Jabeen F and Fontcuberta i Morral A 2015 Cryst. Growth Des. 15 3105
[19] Cohin Y, Mauguin O, Largeau L, Patriarche G, Glas F, Sondergard E and Harmand J C 2013 Nano Lett. 13 2743
[20] Dick K A, Deppert K, Martensson T, Mandl B, Samuelson L and Seifert W 2005 Nano Lett. 5 761
[21] Fu Y Q, Colli A, Fasoli A, Luo J K, Flewitt A J, Ferrari A C, Milne W I 2009 J. Vac. Sci. Technol. B 27 1520
[22] Dubrovskii V G, Xu T, Álvarez A D, Plissard S R, Caroff P, Glas F and Grandidier B 2015 Nano Lett. 15 5580
[23] Munshi A M, Dheeraj D, Fauske V T, Kim D C, Huh J, Reinertsen J F, Ahtapodov L, Lee K D, Heidari B, van Helvoort A T J, Fimland B and Weman H 2014 Nano Lett. 14 960
[24] Fuhrmann B, Leipner H S, Höche H R, Schubert L, Werner P and Gösele U 2005 Nano Lett. 5 2524
[25] Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U and Zacharias M 2007 Small 3 76
[26] Kang Y B, Tang J L, Wang P H, Lin F Y, Fang X, Fang D, Wang D K, Wang X H and Wei Z P 2018 Mater. Res. Express 6 035012
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[9] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[15] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
No Suggested Reading articles found!