Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066701    DOI: 10.1088/1674-1056/abddaa

Floquet bands and photon-induced topological edge states of graphene nanoribbons

Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航)
College of Physics, Chongqing University, Chongqing, China
Abstract  Floquet theorem is widely used in the light-driven systems. But many 2D-materials models under the radiation are investigated with the high-frequency approximation, which may not be suitable for the practical experiment. In this work, we employ the non-perturbative Floquet method to strictly investigate the photo-induced topological phase transitions and edge states properties of graphene nanoribbons under the light irradiation of different frequencies (including both low and high frequencies). By analyzing the Floquet energy bands of ribbon and bulk graphene, we find the cause of the phase transitions and its relation with edge states. Besides, we also find the size effect of the graphene nanoribbon on the band gap and edge states in the presence of the light.
Keywords:  Floquet bands      graphene      topological phase transition      edge states  
Received:  14 December 2020      Revised:  14 January 2021      Accepted manuscript online:  20 January 2021
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  73.22.Pr (Electronic structure of graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the starting foundation of Chongqing University (Grant No. 0233001104429), the National Natural Science Foundation of China (Grant No. 11847301), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2020CQJQY-Z003).
Corresponding Authors:  Xiaolong Lu     E-mail:

Cite this article: 

Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航) Floquet bands and photon-induced topological edge states of graphene nanoribbons 2021 Chin. Phys. B 30 066701

[1] Shirley J H 1965 Phys. Rev. 138 B979
[2] Oka T and Aoki H 2009 Phys. Rev. B 79 169901
[3] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38
[4] Dahlhaus J P, Fregoso B M and Moore J E 2015 Phys. Rev. Lett. 114 246802
[5] Drexler C, Tarasenko S A, Olbrich P, Karch J, Hirmer M, Muller F, Gmitra M, Fabian J, Yakimova R, Lara-Avila S, Kubatkin S, Wang M, Vajtai R, Ajayan P M, Kono J and Ganichev S D 2013 Nat. Nanotechnol. 8 104
[6] Zou J Y and Liu B G 2017 Phys. Rev. B 95 205125
[7] Lü X L and Xie H 2019 J. Phys.: Condens. Matter 31 495401
[8] Atteia J, Bardarson J H and Cayssol J 2017 Phys. Rev. B 96 245404
[9] Usaj G, Perez-Piskunow P M, Torres L E F F and Balseiro C A 2014 Phys. Rev. B 90 115423
[10] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[11] Zhou L W and Gong J B 2018 Phys. Rev. B 97 245430
[12] Xiong T S, Gong J B and An J H 2016 Phys. Rev. B 93 184306
[13] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039
[14] Mikami T, Kitamura S, Yasuda K, Tsuji N, Oka T and Aoki H 2016 Phys. Rev. B 93 144307
[15] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[16] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306
[17] Zhai X C and Jin G J 2014 Phys. Rev. B 89 235416
[18] Ghalamkari K, Tatsumi Y and Saito R 2018 J. Phys. Soc. Jpn. 87 063708
[19] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[20] Kibis O V, Dini K, Iorsh I V and Shelykh I A 2017 Phys. Rev. B 95 125401
[21] Chen L 2019 Chin. Phys. B 28 117304
[22] Vogl M, Rodriguez-Vega M and Fiete G A 2020 Phys. Rev. B 101 024303
[23] Kang Y, Park S Y and Moon K 2020 Phys. Rev. B 101 035137
[24] Torres L E F F, Perez-Piskunow P M, Balseiro C A and Usaj G 2014 Phys. Rev. Lett. 113 266801
[25] Perez-Piskunow P M, Torres L E F F and Usaj G 2015 Phys. Rev. A 91 043625
[26] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[27] Wang Y X and Li F X 2016 Physica B 492 1
[28] Umer M, Bomantara R W and Gong J B 2020 Phys. Rev. B 101 235438
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!