Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066702    DOI: 10.1088/1674-1056/abd7e4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bose-Einstein condensates under a non-Hermitian spin-orbit coupling

Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政)
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We study the properties of Bose-Einstein condensates under a non-Hermitian spin-orbit coupling (SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross-Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin-orbit couplings.
Keywords:  BEC      non-Hermitian SOC      phase transitian      Gross-Pitaevskii equation  
Received:  19 October 2020      Revised:  11 December 2020      Accepted manuscript online:  04 January 2021
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  05.30.Rt (Quantum phase transitions)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  71.35.Lk (Collective effects (Bose effects, phase space filling, and excitonic phase transitions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974331).
Corresponding Authors:  Hao-Wei Li     E-mail:  lhw2@mail.ustc.edu.cn

Cite this article: 

Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政) Bose-Einstein condensates under a non-Hermitian spin-orbit coupling 2021 Chin. Phys. B 30 066702

[1] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[2] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[3] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[4] Galitski V and Spielman I B 2013 Nature 494 49
[5] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[6] Zhou X, Li Y, Cai Z and Wu C 2014 J. Phys. B: At. Mol. Opt. Phys. 46 134001
[7] Zhai H 2015 Rep. Prog. Phys. 78 026001
[8] Yi W, Zhang W and Cui X 2015 Sci. China: Phys. Mech. Astron. 58 014201
[9] Zhang J, Hu H, Liu X J and Pu H 2015 Ann. Rev. Cold At. Mol. 2 81
[10] Xu Y and Zhang C 2015 Int. J. Mod. Phys. B 29 1530001
[11] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[12] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005
[13] Shi Z Y, Cui X and Zhai H 2014 Phys. Rev. Lett. 112 013201
[14] Cui X and Yi W 2014 Phys. Rev. X 4 031026
[15] Zhou L, Yi W and Cui X 2020 Phys. Rev. A 102 043310
[16] Ghatak A and Das T 2018 Phys. Rev. B 97 014512
[17] Zhou L and Cui X 2019 iScience 14 257
[18] Yamamoto K, Nakagawa M, Adachi K, Takasan K, Ueda M and Kawakami N 2019 Phys. Rev. Lett. 123 123601
[19] Brazhnyi V A, Konotop V V, Perez-García V M and Ott H 2009 Phys. Rev. Lett. 102 144101
[20] Zezyulin D A, Konotop V V, Barontini G and Ott H 2012 Phys. Rev. Lett. 109 020405
[21] Cartarius H and Wunner G 2012 Phys. Rev. A 86 013612
[22] Heiss W D, Cartarius H, Wunner G and Main J 2013 J. Phys. A: Math. Theor. 46 275307
[23] Zezyulin D A and Konotop V V 2016 Phys. Rev. A 94 043853
[24] Ashida Y, Furukawa S and Ueda M 2016 Phys. Rev. A 94 053615
[25] Pan L, Chen S and Cui X 2019 Phys. Rev. A 99 011601(R)
[26] Pan L, Chen S and Cui X 2019 Phys. Rev. A 99 063616
[27] Zhou Z and Yu Z 2019 Phys. Rev. A 99 043412
[28] Nakagawa M, Tsuji N, Kawakami N and Ueda M 2020 Phys. Rev. Lett. 124 147203
[29] Pan L, Chen X and Chen Y 2020 Nat. Phys. 16 767
[30] Barontini G, Labouvie R, Stubenrauch F, Vogler A, Guarrera V and Ott H 2013 Phys. Rev. Lett. 110 035302
[31] Labouvie R, Santra B, Heun S and Ott H 2016 Phys. Rev. Lett. 116 235302
[32] Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V and Ott H 2018 Sci. Adv. 4 eaat6539
[33] Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J and Gerbier F 2020 Nat. Phys. 16 21
[34] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[35] Lapp S, Ang'ong'a J, Alex A F and Gadway B 2019 New. J. Phys. 21 045006
[36] Syassen N, Bauer D M, Lettner M, Volz T, Dietze D, Garcia-Ripoll J J, Cirac J I, Rempe G and Dürr S 2018 Science 320 1329
[37] Tomita T, Nakajima S, Danshita I, Takasu Y and Takahashi Y 2017 Sci. Adv. 3 e1701513
[38] Tomita T, Nakajima S, Takasu Y and Takahashi Y 2019 Phys. Rev. A 99 031601(R)
[39] ZWang Z, Navarrete-Benlloch C and Cai Z 2020 Phys. Rev. Lett. 125 115301
[40] Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B 46 134007
[41] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[42] Byrnes T, Kim N Y and Yamamoto Y 2014 Nat. Phys. 10 803
[43] Hanai R, Edelman A, Ohashi Y and Littlewood P B 2019 Phys. Rev. Lett. 122 185301
[44] Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D and Kivshar Y S 2012 Phys. Rev. A 86 013636
[1] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[2] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[3] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[4] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[5] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[6] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[7] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[8] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[9] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[10] Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating
Shuanhu Wang(王拴虎), Gang Li(李刚), Jianyuan Wang(王建元), Yingyi Tian(田颖异), Hongrui Zhang(张洪瑞), Lvkuan Zou(邹吕宽), Jirong Sun(孙继荣), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117201.
[11] Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential
Ying Wang(王颖), Shuyu Zhou(周蜀渝). Chin. Phys. B, 2018, 27(10): 100312.
[12] First-principles study of structural, electronic, and optical properties of cubic InAsxNyP1-x-y triangular quaternary alloys
I Hattabi, A Abdiche, F Soyalp, R Moussa, R Riane, K Hadji, S Bin-Omran, R Khenata. Chin. Phys. B, 2017, 26(1): 017303.
[13] Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas
Xuebing Luo(罗学兵), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2016, 25(11): 110306.
[14] Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials
H. A. Rahnamaye Aliabad. Chin. Phys. B, 2015, 24(9): 097102.
[15] Improved thermoelectric property of cation-substituted CaMnO3
Pradeep Kumar, Subhash C. Kashyap, Vijay Kumar Sharma, H. C. Gupta. Chin. Phys. B, 2015, 24(9): 098101.
No Suggested Reading articles found!