CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Novel rubidium polyfluorides with F3, F4, and F5 species |
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳)† |
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Pressure has an important effect on chemical bonds and their chemical properties. The atypical compounds NaCl3 and CsF3 are predicted to be stable at high pressure and show unique physical and chemical properties. By using ab initio random structure searching and density functional theory calculations, we predicted multiple thermodynamically stable atypical compounds, which are RbF2, RbF3, RbF4, and RbF5 in the pressure range of 0-300 GPa. In these stable compounds, homonuclear bondings of F3, F4, and F5 species are easily formed. The electron structure calculation showed that except for Fd-3m phase of RbF2, these stable compounds are insulators and F 5p orbitals play an important role in the Fermi level. It is interesting that the compounds RbF5 could be stable at nearly ambient pressure and 0 K which will stimulate experimental studies in the future.
|
Received: 19 February 2021
Revised: 14 March 2021
Accepted manuscript online: 18 March 2021
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
82.33.Pt
|
(Solid state chemistry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674122). |
Corresponding Authors:
Defang Duan
E-mail: duandf@jlu.edu.cn
|
Cite this article:
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳) Novel rubidium polyfluorides with F3, F4, and F5 species 2021 Chin. Phys. B 30 066102
|
[1] Sun G L, Huang H M and Li Y L 2016 Chin. Phys. Lett. 33 026104 [2] Zhang J, Liu F L, Dong J K, Xu Y, Li N N, Yang W G and Li S Y 2015 Chin. Phys. Lett. 32 097102 [3] Hai Z, Zhao L X, Hou X Y, Shan L, Ren Z, Chen G F and Ren C 2020 Chin. Phys. Lett. 37 097403 [4] Zhang Y L, Hao X Z, Huang Y P, Tian F B, Li D, Wang Y C, Song H and Duan D F 2021 Chin. Phys. Lett. 38 026101 [5] Xu J M, Wang S Y, Wang W J, Zhou Y H, Chen X L, Yang Z R and Qu Z 2020 Chin. Phys. Lett. 37 076202 [6] Wang C, Liu Y X, Chen X, Lv P and Liu X B 2020 Chin. Phys. Lett. 37 026201 [7] Tian C, Huang X L, Huang Y P, Li X, Zhou D, Wang X and Cui T 2019 Chin. Phys. Lett. 36 106101 [8] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [9] Zhang W, Oganov A R, Goncharov A F, zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konopkova Z 2013 Science 342 1502 [10] Miao M S 2013 Nat. Chem. 5 846 [11] Zhang W, Oganov A R, Zhu Q, Lobanov S S, Stavrou E and Goncharov A F 2016 Sci. Rep. 6 26265 [12] Patel N N, Verma A K, Mishra A K, Sunder M and Sharma S M 2017 Phys. Chem. Chem. Phys. 19 7996 [13] Wei S, Wang J, Deng S, Zhang S and Li Q 2014 Sci. Rep. 5 14393 [14] Zhu L Y, Wang P, Zhai C G, Hu K, Yao M G and Liu B B 2019 Acta. Phys. Sin. 68 176101 (in Chinese) [15] Yuan P F, Zhu W J, Xu J A, Liu S J and Jing F Q 2010 Acta. Phys. Sin. 59 8755 (in Chinese) [16] Lin J Y, Zhang S T, Guan W, Yang G C and Ma Y M 2018 J. Am. Chem. Soc. 140 9545 [17] Lin J Y, Zhao Z Y, Liu C Y, Zhang J, Du X, Yang G C and Ma Y M 2019 J. Am. Chem. Soc. 141 5409 [18] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504 [19] Pickard C J and Needs R 2011 J. Phys.: Condens. Matter 23 053201 [20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 [21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [22] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947 [23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [24] Blöchl P E 1994 Phys. Rev. B 50 17953 [25] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617 [26] Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 [27] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [28] Zhu Q, Oganov A R and Zeng Q 2015 Sci. Rep. 5 7875 [29] Miao M S, Sun Y H, Zurek E and Lin H Q 2020 Nat. Rev. Chem. 4 508 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|