Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066101    DOI: 10.1088/1674-1056/abefc5

Effects of short-range attraction on Jamming transition

Zhenhuan Xu(徐震寰)1, Rui Wang(王瑞)1, Jiamei Cui(崔佳梅)1, Yanjun Liu(刘彦君)1, and Wen Zheng(郑文)1,2,†
1 Institute of Public-safety and Big Data, College of Data Science, Taiyuan University of Technology, Taiyuan 030060, China;
2 Center for Big Data Research in Health, Changzhi Medical College, Changzhi 046000, China
Abstract  Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretical and practical compared with repulsive systems. By studying the statistics of rigid clusters, we find that the critical packing fraction φc varies linearly with attraction μ for different system sizes when the range of attraction is short. While for systems with long-range attractions, however, the slope of φc appears significantly different, which means that there are two distinct jamming scenarios. In this paper, we focus our main attention on short-range attractions scenario and define a new quantity named "short-range attraction susceptibility" χp, which describes the degree of response of the probability of finding jammed states pj to short-range attraction strength μ. Our central results are that χp diverges in the thermodynamic limit as χp ∝|φ-φc|-γp, where φc is the packing fraction at the jamming transition for the infinite system in the absence of attraction. χp obeys scaling collapse with a scaling function in both two and three dimensions, illuminating that the jamming transition can be considered as a phase transition as proposed in previous work.
Keywords:  short-range attraction      Jamming transition      short-range attraction susceptibility  
Received:  17 January 2021      Revised:  03 March 2021      Accepted manuscript online:  18 March 2021
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  63.50.Lm (Glasses and amorphous solids)  
  61.43.-j (Disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11702289), Key Core Technology and Generic Technology Research and Development Project of Shanxi Province, China (Grant No. 2020XXX013), and the National Key Research and Development Project of China.
Corresponding Authors:  Wen Zheng     E-mail:

Cite this article: 

Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文) Effects of short-range attraction on Jamming transition 2021 Chin. Phys. B 30 066101

[1] Hecke V and Martin 2009 J. Phys.: Condens. Matter. 22 033101
[2] Liu A J and Nagel S R 2010 Annu. Rev. Condens. Matter. Phys. 1 347
[3] Zheng W, Zhang S Y and Xu N 2018 Chin. Phys. B 27 66102
[4] Durian D 1995 Phys. Rev. Lett. 75 4780
[5] Liu A J and Nagel S R 1998 Nature 396 21
[6] Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
[7] O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[8] Kamien R D and Liu A J 2007 Phys. Rev. Lett. 99 155501
[9] Torquato S, Truskett T M and Debenedetti P G 2012 Phys. Rev. Lett. 84 2064
[10] Zheng W, Shi Y and Xu N 2015 Sci. China Chem. 58 1013
[11] Markus M and Wyart M 2015 Annu. Rev. Condens. Matter. Phys. 6 177
[12] Baumgarten K and Tighe B P 2017 Soft Matter 13
[13] Lin J and Zheng W 2017 Phys. Rev. E 96 033002
[14] Trappe V, Prasad V, Cipelletti L, Segre P N and Weitz D A 2001 Nature 411 772
[15] Lu P J, Zaccarelli E, Ciulla F, Schofield A B, Sciortino F and Weitz D A 2008 Nature 453 499
[16] Lu P J, Peter J. and Weitz D A 2013 Annu. Rev. Condens. Matter. Phys. 4 217
[17] Irani E, Chaudhuri P and Heussinger C 2013 Phys. Rev. Lett. 112 188303
[18] Lois G, Blawzdziewicz J and O'Hern C S 2008 Phys. Rev. Lett. 110 028001
[19] Zheng W, Liu H and Xu N 2016 Phys. Rev. E 94 062608
[20] Koeze D J and Tighe B P 2018 Phys. Rev. Lett. 121 188002
[21] Griffiths and Robert B 1967 J. Math. Phys. 8 484
[22] Reynolds P J, Stanley H E and Klein W 1977 J. Phys. A: Gen. Phys. 10 L203
[23] Schwarz J M, Liu A J and Chayes L Q 2006 Europhys. Lett. 73 560
[24] Graves A L, Nashed S, Padgett E, Goodrich C P, Liu A J and Sethna J P 2016 Phys. Rev. Lett. 116 235501
[25] Irani E, Chaudhuri P and Heussinger C 2013 Phys. Rev. Lett. 112 188303
[26] Bitzek E, Koskinen P, GaHler F, Moseler M, Gumbsch P 2006 Phys. Rev. Lett. 97 170201
[27] Xiao X H, Bao K, Wang Y C, Xie H and Duan D F 2019 Chin. Phys. B 28 056401
[28] Wang Y Y, Xie H Q, Wu Z H and Xing J J 2016 Chin. Phys. B 9 437
[29] Head D A 2007 Eur. Phys. J. E 22 151
[30] Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
[31] Wang Y C, Fang S Xu N and Deng Y J 2020 Phys. Rev. Lett. 124
[32] VaGberg D, Valdez-Balderas D, Moore M A, Olsson and Teitel S 2011 Phys. Rev. E 83 030303
[33] Goodrich C P, Liu A J and Nagel S R 2012 Phys. Rev. Lett. 109 095704
[34] Charbonneau P, Corwin E I, Parisi G and Zamponi F 2015 Phys. Rev. Lett. 114 125504
[35] Wyart M, Nagel S R and Witten T A 2005 Europhys. Lett. 72 486
[36] Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
[37] Silbert L E, Liu A J and Nagel S R 2005 Phys. Rev. Lett. 95 098301
[38] Henkes S and Chakraborty B 2005 Phys. Rev. Lett. 95 198002
[39] Heussinger C and Barrat J L 2009 Phys. Rev. Lett. 102 218303
[40] O'Hern C S, Langer S A, Liu A J and Nagel S R 2002 Phys. Rev. Lett. 88 075507
[41] Zhang Z, Yunker P, Habdas P and Yodh A G 2011 Phys. Rev. Lett. 107 208303
[42] Li B, Wang F, Zhou D, Peng Y, Ni R and Han Y L 2016 Nature 531 485
[1] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[2] Modeling the capability of penetrating a jammed crowd to eliminate freezing transition
Mohammed Mahmod Shuaib. Chin. Phys. B, 2016, 25(5): 050501.
No Suggested Reading articles found!