Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057102    DOI: 10.1088/1674-1056/abdb1b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia

Zi Li(李孜)1, Wei-Jie Li(李伟节)1, Cong Wang(王聪)1,†, Dafang Li(李大芳)1, Wei Kang(康炜)2, Xian-Tu He(贺贤土)1,2, and Ping Zhang(张平)1,2,‡
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  The x-ray absorption spectroscopy is a powerful tool for the detection of thermodynamic conditions and atomic structures on warm dense matter. Here, we perform first-principles molecular dynamics and x-ray absorption spectrum calculations for warm dense ammonia, which is one of the major constituents of Uranus and Neptune. The nitrogen K-shell x-ray absorption spectrum (XAS) is determined along the Hugoniot curve, and it is found that the XAS is a good indicator of the prevailing thermodynamic conditions. The atomic structures at these conditions are ascertained. Results indicate that the ammonia could dissociate to NHx (x=0, 1, or 2) fragments and form nitrogen clusters, and the ratios of these products change with varying conditions. The contributions to the XAS from these products show quite different characteristics, inducing the significant change of XAS along the Hugoniot curve. Further model simulations imply that the distribution of the peak position of atomic XAS is the dominant factor affecting the total XAS.
Keywords:  first-principles      warm dense      x-ray absorption spectrum      ammonia  
Received:  24 November 2020      Revised:  05 January 2021      Accepted manuscript online:  13 January 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.70.Dm (X-ray absorption spectra)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200), the National Natural Science Foundation of China (Grant Nos. 11775031, 11975058, 11625415, and 11675024), and the Science Challenge Project (Grant No. TZ2016001).
Corresponding Authors:  Cong Wang, Ping Zhang     E-mail:  wang_cong@iapcm.ac.cn;zhang_ping@iapcm.ac.cn

Cite this article: 

Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平) First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia 2021 Chin. Phys. B 30 057102

[1] Hubbard W B 1981 Science 214 145
[2] Hubbard W B, Nellis W J, Mitchell A C, Holmes N C, Limaye S S and McCandless P C 1991 Science 253 648
[3] Redmer R, Mattsson T R, Nettelmann N and French M 2011 Icarus 211 798
[4] Bethkenhagen M, Meyer E R, Hamel S, Nettelmann N, French M, Scheibe L, Ticknor C, Collins L A, Kress J D, Fortney J J and Redmer R 2017 Astrophys. J. 848 67
[5] Nettelmann N, Wang K, Fortney J J, Hamel S, Yellamilli S, Bethkenhagen M and Redmer R 2016 Icarus 275 107
[6] Stevenson D J 1983 Rep. Prog. Phys. 46 555
[7] Stevenson D J 2010 Space Sci. Rev. 152 651
[8] Nellis W J, Hamilton D C, Holmes N C, Radousky H B, Ree F H, Mitchell A C and Nicol M 1988 Science 240 779
[9] Reed J W and Harris P M 1961 J. Chem. Phys. 35 1730
[10] Hewat A W and Riekel C 1979 Acta Crystallogr. Sect. A 35 569
[11] Eckert J, Mills R L and Satija S K 1984 J. Chem. Phys. 81 6034
[12] Von Dreele R B and Hanson R C 1984 Acta Crystallogr. Sect. C 40 1635
[13] Loveday J S, Nelmes R J, Marshall W G, Besson J M, Klotz S and Hamel G 1996 Phys. Rev. Lett. 76 74
[14] Ninet S, Datchi F, Saitta A M, Lazzeri M and Canny B 2006 Phys. Rev. B 74 104101
[15] Gauthier M, Pruzan P, Chervin J C and Besson J M 1988 Phys. Rev. B 37 2102
[16] Datchi F, Ninet S, Gauthier M, Saitta A M, Canny B and Decremps F 2006 Phys. Rev. B 73 174111
[17] Ninet S and Datchi F 2008 J. Chem. Phys. 128 154508
[18] Ninet S, Datchi F, Klotz S, Hamel G, Loveday J S and Nelmes R J 2009 Phys. Rev. B 79 100101
[19] Ninet S, Datchi F and Saitta A M 2012 Phys. Rev. Lett. 108 165702
[20] Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M 1999 Science 283 44
[21] Ojwang J G O, Stewart McWilliams R, Ke X and Goncharov A F 2012 J. Chem. Phys. 137 064507
[22] Dick R D 1981 J. Chem. Phys. 74 4053
[23] Mitchell A C and Nellis W J 1982 J. Chem. Phys. 76 6273
[24] Radousky H B, Mitchell A C and Nellis W J 1990 J. Chem. Phys. 93 8235
[25] Nellis W J, Holmes N C, Mitchell A C, Hamilton D C and Nicol M 1997 J. Chem. Phys. 107 9096
[26] Chau R, Hamel S and Nellis W J 2011 Nat. Commun. 2 203
[27] Guarguaglini M, Hernandez J A, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T and Ravasio A 2019 Sci. Rep. 9 10155
[28] Bethkenhagen M, French M and Redmer R 2013 J. Chem. Phys. 138 234504
[29] Li D, Wang C, Yan J, Fu Z G and Zhang P 2017 Sci. Rep. 7 12338
[30] Li D, Zhang P and Yan J 2013 J. Chem. Phys. 139 134505
[31] Pickard C J and Needs R J 2008 Nat. Mater. 7 775
[32] Griffiths G I G, Needs R J and Pickard C J 2012 Phys. Rev. B 86 144102
[33] Bradley D K, Kilkenny J, Rose S J and Hares J D 1987 Phys. Rev. Lett. 59 2995
[34] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T and Hawreliak J A 2008 Phys. Plasmas 15 062703
[35] Levy A, Dorchies F, Fourment C, Harmand M, Hulin S, Santos J J, Descamps D, Petit S and Bouillaud R 2010 Rev. Sci. Instrum. 81 063107
[36] Zhao Y, Yang J, Zhang J, Yang G, Wei M, Xiong G, Song T, Zhang Z, Bao L, Deng B, Li Y, He X, Li C, Mei Y, Yu R, Jiang S, Liu S, Ding Y and Zhang B 2013 Phys. Rev. Lett. 111 155003
[37] Mazevet S, Recoules V, Bouchet J, Guyot F, Harmand M, Ravasio A and Benuzzi-Mounaix A 2014 Phys. Rev. B 89 100103
[38] Mazevet S and Zerah G 2008 Phys. Rev. Lett. 101 155001
[39] Levy A, Dorchies F, Benuzzi-Mounaix A, Ravasio A, Festa F, Recoules V, Peyrusse O, Amadou N, Brambrink E, Hall T, Koenig M and Mazevet S 2012 Phys. Rev. Lett. 108 055002
[40] Zhao S, Zhang S, Kang W, Li Z, Zhang P and He X T 2015 Phys. Plasmas 22 062707
[41] Douma D H, Ciprian R, Lamperti A, Lupo P, Cianci E, Sangalli D, Casoli F, Nasi L, Albertini F, Torelli P and Debernardi A 2014 Phys. Rev. B 90 205201
[42] Cho B I, Engelhorn K, Correa A A, Ogitsu T, Weber C P, Lee H J, Feng J, Ni P A, Ping Y, Nelson A J, Prendergast D, Lee R W, Falcone R W and Heimann P A 2011 Phys. Rev. Lett. 106 167601
[43] Manuel D, Cabaret D, Brouder C, Sainctavit P, Bordage A and Trcera N 2012 Phys. Rev. B 85 224108
[44] Zhang S, Zhao S, Kang W, Zhang P and He X T 2016 Phys. Rev. B 93 115114
[45] Shimada H, Fukao T, Minami H, Ukai M, Fujii K, Yokoya A, Fukuda Y and Saitoh Y 2014 J. Chem. Phys. 141 055102
[46] Stevens J S, Newton L K, Jaye C, Muryn C A, Fischer D A and Schroeder S L M 2015 Cryst. Growth Des. 15 1776
[47] Wang X, Hou Z, Ikeda T, Oshima M, Kakimoto M A and Terakura K 2013 J. Phys. Chem. A 117 579
[48] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[49] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[50] Blochl P E 1994 Phys. Rev. B 50 17953
[51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[52] Taillefumier M, Cabaret D, Flank A-M and Mauri F 2002 Phys. Rev. B 66 195107
[53] Gougoussis C, Calandra M, Seitsonen A P and Mauri F 2009 Phys. Rev. B 80 075102
[54] Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido L C, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari P S, Alexander S, Paolo U and Renata M W 2009 J. Phys.: Condens. Matter 21 395502
[55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[56] Li Z, Zhang S, Wang C, Kang W and Zhang P 2016 Phys. Plasmas 23 053304
[57] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M and Ajayan P M 2010 ACS Nano 4 6337
[58] Li Z, Wang C, Li D, Kang W and Zhang P 2017 Phys. Plasmas 24 092705
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!