Abstract The lack of the long-range order in the atomic structure challenges the identification of the structural defects, akin to dislocations in crystals, which are responsible for predicting plastic events and mechanical failure in metallic glasses (MGs). Although vast structural indicators have been proposed to identify the structural defects, quantitatively gauging the correlations between these proposed indicators based on the undeformed configuration and the plasticity of MGs upon external loads is still lacking. Here, we systematically analyze the ability of these indicators to predict plastic events in a representative MG model using machine learning method. Moreover, we evaluate the influences of coarse graining method and medium-range order on the predictive power. We demonstrate that indicators relevant to the low-frequency vibrational modes reveal the intrinsic structural characteristics of plastic rearrangements. Our work makes an important step towards quantitative assessments of given indicators, and thereby an effective identification of the structural defects in MGs.
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018004), the NSAF Joint Program (Grant No. U1930402), the National Natural Science Foundation of China (Grant No. 51801230), and the National Key Research and Development Program of China (Grant No. 2018YFA0703601).
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞) Quantitative structure-plasticity relationship in metallic glass: A machine learning study 2021 Chin. Phys. B 30 057103
[1] Telford M 2004 Mater. Today7 36 [2] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R: Rep.44 45 [3] Wang W H 2009 Adv. Mater.21 4524 [4] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater.55 4067 [5] Spaepen F 1977 Acta Metall.25 407 [6] Argon A 1979 Acta Metall.27 47 [7] Falk M L and Langer J S 1998 Phys. Rev. E57 7192 [8] Wang Z and Wang W H 2019 Natl. Sci. Rev.6 304 [9] Ma E 2015 Nat. Mater.14 547 [10] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett.106 135503 [11] Ding J, Patinet S, Falk M L, Cheng Y and Ma E 2014 Proc. Natl. Acad. Sci. USA111 14052 [12] Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O and Ma E 2016 Nat. Commun.7 13733 [13] Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J and Dai L H 2019 Phys. Rev. B99 014115 [14] Wang Q and Jain A 2019 Nat. Commun.10 5537 [15] Fan Z, Ding J and Ma E 2020 Mater. Today40 48 [16] Patinet S, Vandembroucq D and Falk M L 2016 Phys. Rev. Lett.117 045501 [17] Richard D, Ozawa M, Patinet S, Stanifer E, Shang B, Ridout S A, Xu B, Zhang G, Morse P K, Barrat J-L, Berthier L, Falk M L, Guan P, Liu A J, Martens K, Sastry S, Vandembroucq D, Lerner E and Manning M L 2020 Phys. Rev. Mater.4 113609 [18] Cubuk E D, Schoenholz S S, Rieser J M, Malone B D, Rottler J, Durian D J, Kaxiras E and Liu A J 2015 Phys. Rev. Lett.114 108001 [19] Schoenholz S S, Cubuk E D, Sussman D M, Kaxiras E and Liu A J 2016 Nat. Phys.12 469 [20] Cubuk E D, Ivancic R J S, Schoenholz S S et al. 2017 Science358 1033 [21] Schoenholz S S, Cubuk E D, Kaxiras E and Liu A J 2017 Proc. Natl. Acad. Sci. USA114 263 [22] Sussman D M, Schoenholz S S, Cubuk E D and Liu A J 2017 Proc. Natl. Acad. Sci. USA114 10601 [23] Plimpton S 1995 J. Comput. Phys.117 1 [24] Cheng Y, Ma E and Sheng H W 2009 Phys. Rev. Lett.102 245501 [25] Nosé S 1984 J. Chem. Phys.81 511 [26] Rodney D, Tanguy A and Vandembroucq D 2011 Model. Simul. Mat. Sci. Eng.19 083001 [27] Maloney C and Lemaȋtre A 2004 Phys. Rev. Lett.93 016001 [28] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett.8 3434 [29] Chang C C and Lin C J 2011 ACM Trans. Intell. Syst. Technol.2 27 [30] Fawcett T 2006 Pattern Recognit. Lett.27 861 [31] Wang Q, Ding J, Zhang L, Podryabinkin E, Shapeev A and Ma E 2020 npj Comput. Mater.6 194 [32] Manning M and Liu A 2011 Phys. Rev. Lett.107 108302 [33] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett.93 135701 [34] Widmer-Cooper A and Harrowell P 2006 Phys. Rev. Lett.96 185701 [35] Widmer-Cooper A and Harrowell P 2006 J. Non-Cryst. Solids352 5098 [36] Tong H and Tanaka H 2018 Phys. Rev. X8 011041 [37] Tong H and Tanaka H 2019 Nat. Commun.10 5596 [38] Sheng H, Luo W, Alamgir F, Bai J and Ma E 2006 Nature439 419 [39] Lee M, Lee C M, Lee K R, Ma E and Lee J C 2011 Acta Mater.59 159 [40] Wang B, Luo L, Guo E, Su Y, Wang M, Ritchie R O, Dong F, Wang L, Guo J and Fu H 2018 npj Comput. Mater.4 41
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.