CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries |
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉)†, and Naigen Zhou(周耐根)‡ |
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China |
|
|
Abstract Based on the density functional theory calculations, we have investigated the feasibility of two-dimensional β-GeS monolayer as high-performance anodes for alkali metal ion batteries. The results show that the electrical conductivity of β-GeS monolayer can be enhanced after adsorbing the alkali metal atoms owing to the semiconductor-to-metal transition. The low diffusion barriers of alkali metal atoms on the β-GeS surface indicate a rapid charge/discharge rate without metal clustering. Moreover, the low average open-circuit voltage (0.211 V) and a high theoretical capacity (1024 mAh·g-1) for Na suggest that the β-GeS monolayer is a promising anode material for Na-ion batteries with high performance.
|
Received: 27 December 2021
Revised: 02 March 2022
Accepted manuscript online: 14 March 2022
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
82.47.Cb
|
(Lead-acid, nickel-metal hydride and other batteries)
|
|
96.15.Pf
|
(Physical properties of materials)
|
|
Fund: Project supported by the the National Natural Science Foundation of China (Grant Nos. 52062035 and 51861023) and the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No. 20213BCJ22056). |
Corresponding Authors:
Shangquan Zhao, Naigen Zhou
E-mail: sqzhao@ncu.edu.cn;ngzhou@ncu.edu.cn
|
Cite this article:
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉)†, and Naigen Zhou(周耐根)‡ First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries 2022 Chin. Phys. B 31 096301
|
[1] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928 [2] Lin D C, Liu Y Y and Cui Y 2017 Nat. Nanotechnol. 12 194 [3] Hu J, Wang Z, Zhang G, Liu Y, Liu N, Li W, Li J, Ouyang C and Yang S A 2021 Chin. Phys. B 30 046302 [4] Wang L, Huang Z, Wang B, Liu G, Cheng M, Yuan Y, Luo H, Gao T, Wang D and Shahbazian-Yassar R 2019 ACS Appl. Mater. Inter. 11 10663 [5] Fan X, Zheng W T and Kuo J L 2012 ACS Appl Mater. Inter. 4 2432 [6] Li J, Yan S, Wu W X, Li L X, Li. H D and Hashem S 2020 Comput. Theor. Chem. 1181 112796 [7] Zhou C, Huang J and Duan X 2021 Chin. Phys. B 30 056801 [8] Zhao Z, Yu T, Zhang S, Xu H, Yang G and Liu Y 2019 J. Mater. Chem. A 7 405 [9] Zhang W, Mao J, Li S, Chen Z and Guo Z 2017 J. Am. Chem. Soc. 139 3316 [10] Hu Y, Wang J and Lin H 2021 Colloid Surf. A 619 126536 [11] Cho Y J, Im S H, Kim H S, Myung Y, Back S H, Lim Y R, Jung C S, Jang D M, Park J, Cha E H, Cho W I, Shojaei F and Kang H S 2013 Acs Nano 7 9075 [12] Sung G K and Park C M 2017 J. Mater. Chem. A 5 5685 [13] Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q and Zhai T Y 2018 Adv. Sci. 5 1800478 [14] Chaki S H, Chaudhary M D and Deshpande M P 2015 J. Therm. Anal. Calorim. 120 1261 [15] Shi X L, Tao X Y, Zou J and Chen Z G 2020 Adv. Sci. 7 1902923 [16] Berdiyorov G R 2015 Appl. Surf. Sci. 359 153 [17] Wang G, Qin W and Shi J 2021 Chin. Phys. B 30 046301 [18] Hassan A S, Moyer K, Ramachandran B R and Wick C D 2016 J. Phys. Chem. C 120 2036 [19] Jing Y, Zhou Z, Cabrera C R and Chen Z F 2013 J. Phys. Chem. C 117 25409 [20] Shi L and Zhao T 2017 J. Mater. Chem. A 5 3735 [21] Khantha M, Cordero N A, Molina L M, Alonso J A and Girifalco L A 2004 Phys. Rev. B 70 125422 [22] Tan X, Li F and Chen Z 2014 J. Phys. Chem. C 118 25825 [23] Mortazavi M, Wang C, Deng J, Shenoy V B and Medhekar N V 2014 J. Power. Sources 268 279 [24] Wu J, Wang D, Liu H, Lau W M and Liu L M 2015 Rsc Adv. 5 21455 [25] Wang Y, Song N, Song X, Zhang T, Zhang Q and Li M 2018 Rsc Adv. 8 10848 [26] Tang Q, Zhou Z and Shen P W 2012 J. Am. Chem. Soc. 134 16909 [27] Tang X, Guo X, Wu W J and Wang G X 2018 Adv. Energ. Mater. 8 1801897 [28] Kulish V V, Malyi O I, Persson C and Wu P 2015 Phys. Chem. Chem. Phys. 17 13921 [29] Chowdhury C, Karmakar S and Datta A 2016 Acs Energy Lett. 1 253 [30] Banerjee S, Periyasamy G and Pati S K 2014 J. Mater. Chem. A 2 3856 [31] Lam D, Chen K S, Kang J, Liu X and Hersam M C 2018 Chem. Mater. 30 2245 [32] Li F, Qu Y and Zhao M 2016 J. Mater. Chem. A 4 8905 [33] Ding Y, Deng Q, You C, Xu Y, Li J and Xiao B 2020 Phys. Chem. Chem. Phys. 22 21208 [34] Xiong L, Wang H, Xiong W, Yu S and Ouyang C 2019 Rsc Adv. 9 27378 [35] Hu T and Dong J M 2016 Phys. Chem. Chem. Phys. 18 32514 [36] Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P and Cava R J 2017 J. Am. Chem. Soc. 139 2771 [37] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212 [38] Blochl P E 1994 Phys. Rev. B Condens. Matter. 50 17953 [39] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865 [40] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [41] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [42] Liu B, Gao T, Liao P, Wen Y, Yao M, Shi S and Zhang W 2021 Phys. Chem. Chem. Phys. 23 18784 [43] Nose S 1984 J. Chem. Phys. 81 511 [44] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901 [45] Momma K and Izumi F 2011 J. Appl. Crystall. 44 1272 [46] Yin H, Liu C, Zheng G P, Wang Y and Ren F 2019 Appl. Phys. Lett. 114 192903 [47] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L 2020 Natl. Sci. Rev. 7 1768 [48] Deng X, Chen X, Huang Y, Xiao B and Du H 2019 J. Phys. Chem. C 123 4721 [49] Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y and Yang S A 2016 J. Mater. Chem. A 4 15224 [50] Wang Y and Li Y 2020 J. Mater. Chem. A 8 4274 [51] Sannyal A, Zhang Z, Gao X and Jang J 2018 Comp. Mater. Sci. 154 204 [52] Persson K, Hinuma Y, Meng Y S, Van der Ven A and Ceder G 2010 Phys. Rev. B 82 125416 [53] Yang Z G, Choi D, Kerisit S, Rosso K M, Wang D H, Zhang J, Graff G and Liu J 2009 J. Power Sources 192 588 [54] Khossossi N, Banerjee A, Benhouria Y, Essaoudi I, Ainane A and Ahuja R 2019 Phys. Chem. Chem. Phys. 21 18328 [55] Lv X, Li F, Gong J, GuJ, Lin S and Chen Z 2020 Phys. Chem. Chem. Phys. 22 8902 [56] Yu X, Dall'Agnese Y, Naguib M, Gogotsi Y and Kent P 2014 Acs Nano 8 9606 [57] Aslam M K, Niu Y B and Xu M W 2021 Adv Energy Mater. 11 2000681 [58] Bak S M Q, Yang R M, Lee W L, Yu S, Anasori X Q, Lee B, Gogotsi H and Yang X Q 2017 Adv Energy Mater. 7 1700959 [59] Chen J F, Hu Q K, Zhou A G and Sun D D 2015 Acta Phys.-Chim. Sin. 31 2278 [60] Mortazavi M, Wang C, Deng J, Shenoy V B and Medhekar N V 2014 J. Power Sources 268 279 [61] Sun Q, Dai Y, Ma Y, Jing T, Wei W and Huang B 2016 J. Phys. Chem. Lett. 7 937 [62] Zhou Y, Zhao M, Chen Z W, Shi X M and Jiang Q 2018 Phys. Chem. Chem. Phys. 20 30290 [63] Li F Y, Cabrera C R, Wang J Y and Chen Z F 2016 Rsc Adv. 6 81591 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|