Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058505    DOI: 10.1088/1674-1056/abee07
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation

Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠)
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  Despite anionic doping has been widely implemented to increase the visible light activity of TiO$_{2}$, it often gives rise to a dramatical anodic shift in current onset potential. Herein, we show an effective method to achieve the huge cathodic shift of TiO$_{2}$ photoanode with significantly enhanced visible light photo-electrochemical activity by nitrogen/cobalt co-implantation. The nitrogen/cobalt co-doped TiO$_{2}$ nanorod arrays (N/Co-TiO$_{2}$) exhibit a cathodic shift of 350 mV in onset potential relative to only nitrogen-doped TiO$_{2}$ (N-TiO$_{2}$). Moreover, the visible-light ($\lambda >420 $ nm) photocurrent density of N/Co-TiO$_{2}$ reaches 0.46 mA/cm$^{2}$, far exceeding 0.07 mA/cm$^{2}$ in N-TiO$_{2}$ at 1.23 V $versus$ reversible hydrogen electrode (RHE). Systematic characterization studies demonstrate that the enhanced photo-electrochemical performance can be attributed to the surface synergic sputtering of high-energy nitrogen/cobalt ions.
Keywords:  ion implantation      TiO2      surface sputtering      photo-electrochemical water splitting  
Received:  07 January 2021      Revised:  24 February 2021      Accepted manuscript online:  12 March 2021
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  71.20.Nr (Semiconductor compounds)  
  68.49.Sf (Ion scattering from surfaces (charge transfer, sputtering, SIMS))  
  89.60.-k (Environmental studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875211), the Major Science and Technology Program of Changsha, China (Grant No. kq1902046), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Changzhong Jiang     E-mail:  czjiang@hnu.edu.cn

Cite this article: 

Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠) Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation 2021 Chin. Phys. B 30 058505

[1] Fujishima A and Honda K 1972 Nature 238 37
[2] Chen X, Liu L, Yu P Y and Mao S S 2011 Science 331 746
[3] Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N and Chen P 2016 Nature 530 77
[4] Shaner M R, Hu S, Sun K and Lewis N S 2015 Energy Environ. Sci. 8 203
[5] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z and Li Y 2011 Nano Lett. 11 3026
[6] Hoang S, Berglund S P, Hahn N T, Bard A J and Mullins C B 2012 J. Am. Chem. Soc. 134 3659
[7] Song X, He D, Li W, Ke Z, Liu J, Tang C, Cheng L, Jiang C, Wang Z and Xiao X 2019 Angew. Chem. Int. Edit. 58 16660
[8] Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y and Duan X 2015 Nano Lett. 15 4692
[9] Chen X and Burda C 2008 J. Am. Chem. Soc. 130 5018
[10] Song X, Li W, Liu X, Wu Y, He D, Ke Z, Cheng L, Jiang C, Wang G, Xiao X and Li Y 2021 J. Energy Chem. 55 154
[11] Jang J W, Du C, Ye Y, Lin Y, Yao X, Thorne J, Liu E, McMahon G, Zhu J, Javey A, Guo, J and Wang, D 2015 Nat. Commun. 6 7447
[12] Liu C, Tang J, Chen H M, Liu B and Yang P 2013 Nano Lett. 13 2989
[13] Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp I D, Kudo A, Yamada T and Domen K 2016 Nat. Mater. 15 611
[14] Hoang S, Guo S, Hahn N T, Bard A J and Mullins C B 2012 Nano Lett. 12 26
[15] Dearnaley G 1975 Nature 256 701
[16] Song X, Li W, He D, Wu H, Ke Z, Jiang C, Wang G and Xiao X 2018 Adv. Energy Mater. 8 1800165
[17] Song X, Dai Z, Xiao X, Li W, Zheng X, Shang X, Zhang X, Cai G, Wu W, Meng F and Jiang C 2015 Sci. Rep. 5 17529
[18] Zheng X, Shen S, Ren F, Cai G, Xing Z, Liu Y, liu D, Zhang G, Xiao X, Wu W and Jiang C 2015 Int. J. Hydrogen Energy 40 5034
[19] Ou X, Heinig K H, Hubner R, Grenzer J, Wang X, Helm M, Fassbender J and Facsko S 2015 Nanoscale 7 18928
[20] Zhou X, Häublein V, Ning L, Nguyen N T, Zolnhofer E M, Tsuchiya H, Killian M S, Meyer K, Frey L and Schmuki P 2016 Angew. Chem. Int. Edit. 55 3763
[21] Ou X, Keller A, Helm M, Fassbender J and Facsko S 2013 Phys. Rev. Lett. 111 016101
[22] Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985
[23] Narayanan P 1950 Proceedings-Mathematical Sciences 32 279
[24] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[25] Varley J B, Janotti A and Van de Walle C G 2011 Adv. Mater. 23 2343
[26] Wang L, Zhang W, Zheng X, Chen Y, Wu W, Qiu J, Zhao X, Zhao X, Dai Y and Zeng J 2017 Nat. Energy 2 869
[27] Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G and Yu Q 2014 Nat. Nanotechnol. 9 69
[28] He D, Song X, Li W, Tang C, Liu J, Ke Z, Jiang C and Xiao X 2020 Angew. Chem. Int. Ed. 59 6929
[29] Chambers S A, Wang C M, Thevuthasan S, Droubay T, McCready D E, Lea A S, Shutthanandan V and Windisch C F 2002 Thin Solid Films 418 197
[30] Manivannan A, Seehra M S, Majumder S B and Katiyar R S 2003 Appl. Phys. Lett. 83 111
[31] Dean M H and Stimming U 1989 J. Phys. Chem. 93 8053
[32] Fang W, Wang X, Zhang H, Jia Y, Huo Z, Li Z, Zhao H, Yang H and Yao X 2014 J. Mater. Chem. A 2 3513
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[3] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[4] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[5] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[6] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[7] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[8] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[9] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[10] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[11] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[12] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[13] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[14] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[15] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
No Suggested Reading articles found!