CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film |
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英) |
State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Mn:ZnSe/ZnS/L-Cys core-shell quantum dots (QDs) sensitized La-doped nano-TiO2 thin film (QDSTF) was prepared. X-ray photoelectron spectroscopy (XPS), nanosecond transient photovoltaic (TPV), and steady state surface photovoltaic (SPV) technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF. The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic. The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film, while the acceptor level of the doped Mn2+ ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs. The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF. The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one. And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF. These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.
|
Received: 16 December 2019
Revised: 28 January 2020
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
73.63.Kv
|
(Quantum dots)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2017203029). |
Corresponding Authors:
Kui-Ying Li
E-mail: kuiyingli@ysu.edu.cn
|
Cite this article:
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英) Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film 2020 Chin. Phys. B 29 046104
|
[1] |
Kovtun O, Tomlinson I D, Bailey D M, Thal L B, Ross E J, Harris L, Frankland M P, Ferguson R S, Glaser Z, Greer J and Rosenthal S J 2018 Chem. Phys. Lett. 706 741
|
[2] |
Delikanli S, Guzelturk B, Hernández-Martínez P L, Erdem T, Kelestemur Y, Olutas M, Akgul M Z and Demir H V 2015 Adv. Funct. Mater. 25 4282
|
[3] |
Chistyakov A A, Zvaigzne M A, Nikitenko V R, Tameev A R, Martynov I L and Prezhdo O V 2017 J. Phys. Chem. Lett. 8 4129
|
[4] |
Chaguetmi S, Mammeri F, Nowak S and Decorse P 2013 RSC Adv. 3 2572
|
[5] |
Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
|
[6] |
Wilson K C, Manikandan E and Ahamed M B 2014 Mater. Lett. 120 295
|
[7] |
Milekhin A G, Sveshnikova L L, Repinsky S M, Gutakovsky A K and Friedrich M 2002 Thin Solid Films 422 200
|
[8] |
Lohar G M, Shinde S K, Rath M C and Fulari V J 2014 Mater. Sci. Semicond. Process. 26 548
|
[9] |
Kennedy J, Murmu P P, Leveneur J, Markwitz A and Futter J 2016 Appl. Surf. Sci. 367 52
|
[10] |
Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
|
[11] |
Sarma D D, Nag A, Santra P K, Kumar A, Sapra S and Mahadevan P 2010 J. Phys. Chem. Lett. 1 2149
|
[12] |
Yu W W, Qu L H, Guo W Z and Peng X G 2003 Chem. Mater. 15 2854
|
[13] |
Hughes B K, Beard M C, Nozik A J and Johnson J C 2011 J. Phys. Chem. Lett. 2 1282
|
[14] |
Speranskaya E S, Beloglazova N V, Lenain P, Saeger S D, Wang Z, Zhang S, Hens Z, Knopp D, Niessner R, Potapkin D V and Goryacheva I Y 2014 Biosens. Bioelectron. 53 225
|
[15] |
Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259
|
[16] |
Meinardi F, McDaniel H, Carulli F, Colombo A, Velizhanin K A, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
|
[17] |
Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2013 Nat. Photonics. 7 13
|
[18] |
Yan J F and Saunders B R 2014 RSC Adv. 4 43286
|
[19] |
Zhu G, Pan L K, Xu T and Sun Z 2011 ACS Appl. Mater. Inter. 3 3146
|
[20] |
Song X H, Wang M Q, Shi Y H, Deng J P, Yang Z and Yao X 2012 Electrochim. Acta 81 260
|
[21] |
Hossain M A, Jennings J R, Shen C, Pan J H, Koh Z Y, Mathews N and Wang Q 2012 J. Mater. Chem. 22 16235
|
[22] |
Lee H J, Wang M K, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M and Nazeeruddin M K 2009 Nano. Lett. 9 4221
|
[23] |
Lee Y L, Huang B M and Chien H T 2008 Chem. Mater. 20 6903
|
[24] |
Tian J J, Gao R, Zhang Q F, Li Y W, Lan J, Qu X H and Cao G Z 2012 J. Phys. Chem. C 116 18655
|
[25] |
Lin S C, Lee Y L, Chang C H, Shen Y J and Yang Y M 2007 Appl. Phys. Lett. 90 143517
|
[26] |
Li G S, Zhang D Q and Yu J C 2009 Environ. Sci. Technol. 43 7079
|
[27] |
Huang S Q, Zhang Q X, Huang X M, Guo X Z, Deng M H, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2010 Nano Technol. 21 375201
|
[28] |
Li K Y and Xue Z J 2014 Mater. Chem. Phys. 148 253
|
[29] |
Ren L, Li K Y, Cui J Y and Shen T D 2018 J. Mater Sci: Mater. Electron. 29 4478
|
[30] |
Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y and Wang L Q 2015 Nanoscale 7 7906
|
[31] |
Cui J Y, Li K Y, Ren L, Zhao J and Shen T D 2016 J. Appl. Phys. 120 184302
|
[32] |
Zhang Y, Xie T F, Jiang T F, Wei X, Pang S, Wang X and Wang D J 2009 Nanotechnology 20 155707
|
[33] |
Pernik D R, Turdy K, Radich J G and Kamat P V 2011 J. Phys. Chem. C. 115 13511
|
[34] |
Mocatta D, Cohen G, Schattner J, Millo O, Rabani E and Banin U 2011 Science 332 77
|
[35] |
Antonelli D M and Ying J Y 1995 Angew. Chem. Int. Ed. Engl. 34 2014
|
[36] |
Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M and Fu H G 2004 J. Solid. State. Chem. 177 3375
|
[37] |
Legrand-Buscema C and Bach C M S 2002 Thin Solid Films 418 79
|
[38] |
Guijarro N, Shen Q, Gimenez S, Mora-Sero I, Bisquert J, Lana-Villarreal T, Toyoda T and Gomez R 2010 J. Phys. Chem. C. 114 22352
|
[39] |
Wei X, Xie T F, Xu D, Zhao Q D, Pang S and Wang D J 2008 Nanotechnology 19 275707
|
[40] |
Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y and Yanagida S 2004 J. Phys. Chem. B 108 1628
|
[41] |
Kronik L and Shapira Y 1999 Surf. Sci. Rep. 37 1
|
[42] |
Ren P G, Yan D X, Ji X, Chen T and Li Z M 2011 Nanotechnology 22 055705
|
[43] |
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S B T and Ruoff R S 2007 Carbon 45 1558
|
[44] |
Park S J, An J H, Piner R D, Jung I, Yang D X, Velamakanni A, Nguyen S B T and Ruoff R S 2008 Chem. Mater. 20 6592
|
[45] |
Swart H C, Greeff A P, Holloway P H and Berning G L P 1999 App. Surf. Sci. 140 63
|
[46] |
Shenasa M, Sainkar S and Lichtman D 1986 J. Elecron. Spectrosc. 40 329
|
[47] |
Mandale A B, Badrinarayanan S, Date S K and Sinha A P B 1984 J. Elecron. Spectrosc. 33 61
|
[48] |
Myeongcheol K and Osten H J 1997 Appl. Phys. Lett. 70 2702
|
[49] |
Ludeke R, Ley L and Ploog K 1978 Solid State Commun. 28 57
|
[50] |
Li K Y, Ren L and Shen T D 2018 Chin. Phys. B 27 067305
|
[51] |
Li K Y, Wei S L and Yang W Y 2011 J. Phys. Chem. Solids 72 643
|
[52] |
Balaji S, Djaoued Y and Robichaud J 2006 J. Raman Spectrosc. 37 1416
|
[53] |
Ma W, Lu Z and Zhang M 1998 Appl. Phys. A 66 621
|
[54] |
Ohsaka T 1980 J. Phys. Soc. Jap. 48 1661
|
[55] |
Jiang Y, Meng X M, Yiu W C, Liu J, Ding J X, Lee C S and Lee S T 2004 J. Phys. Chem. B 108 2784
|
[56] |
Shao Y, Cao C S, Chen S L, He M, Fang J L, Chen J, Li X F and Li D Z 2015 Appl. Catal. B-Environ. 179 344
|
[57] |
Xu X Q, Giménez S, Seró I M, Abate A, Bisquert J and Xu G 2010 Mater. Chem. Phys. 124 709
|
[58] |
Winter J O, Gomez N, Gatzert S, Schmidt C E and Korgel B A 2005 Colloids Surf. A: Physicochem. Eng. Aspects. 254 147
|
[59] |
Mahrov B, Boschloo G, Hagfeldt A, Dloczik L and Dittrich Th 2004 Appl. Phys. Lett. 84 5455
|
[60] |
Duzhko V, Koch F and Dittrich Th 2002 J. Appl. Phys. 91 9432
|
[61] |
Lifshitz E, Kaplan A, Ehrenfreund E and Meissner D 1998 J. Phys. Chem. B 102 967
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|