Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046104    DOI: 10.1088/1674-1056/ab7742
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film

Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英)
State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  Mn:ZnSe/ZnS/L-Cys core-shell quantum dots (QDs) sensitized La-doped nano-TiO2 thin film (QDSTF) was prepared. X-ray photoelectron spectroscopy (XPS), nanosecond transient photovoltaic (TPV), and steady state surface photovoltaic (SPV) technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF. The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic. The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film, while the acceptor level of the doped Mn2+ ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs. The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF. The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one. And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF. These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.
Keywords:  doping effects      ZnSe quantum dots sensitization      nano-TiO2 thin film      photoelectron spectroscopy  
Received:  16 December 2019      Revised:  28 January 2020      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  73.63.Kv (Quantum dots)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2017203029).
Corresponding Authors:  Kui-Ying Li     E-mail:  kuiyingli@ysu.edu.cn

Cite this article: 

Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英) Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film 2020 Chin. Phys. B 29 046104

[1] Kovtun O, Tomlinson I D, Bailey D M, Thal L B, Ross E J, Harris L, Frankland M P, Ferguson R S, Glaser Z, Greer J and Rosenthal S J 2018 Chem. Phys. Lett. 706 741
[2] Delikanli S, Guzelturk B, Hernández-Martínez P L, Erdem T, Kelestemur Y, Olutas M, Akgul M Z and Demir H V 2015 Adv. Funct. Mater. 25 4282
[3] Chistyakov A A, Zvaigzne M A, Nikitenko V R, Tameev A R, Martynov I L and Prezhdo O V 2017 J. Phys. Chem. Lett. 8 4129
[4] Chaguetmi S, Mammeri F, Nowak S and Decorse P 2013 RSC Adv. 3 2572
[5] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
[6] Wilson K C, Manikandan E and Ahamed M B 2014 Mater. Lett. 120 295
[7] Milekhin A G, Sveshnikova L L, Repinsky S M, Gutakovsky A K and Friedrich M 2002 Thin Solid Films 422 200
[8] Lohar G M, Shinde S K, Rath M C and Fulari V J 2014 Mater. Sci. Semicond. Process. 26 548
[9] Kennedy J, Murmu P P, Leveneur J, Markwitz A and Futter J 2016 Appl. Surf. Sci. 367 52
[10] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[11] Sarma D D, Nag A, Santra P K, Kumar A, Sapra S and Mahadevan P 2010 J. Phys. Chem. Lett. 1 2149
[12] Yu W W, Qu L H, Guo W Z and Peng X G 2003 Chem. Mater. 15 2854
[13] Hughes B K, Beard M C, Nozik A J and Johnson J C 2011 J. Phys. Chem. Lett. 2 1282
[14] Speranskaya E S, Beloglazova N V, Lenain P, Saeger S D, Wang Z, Zhang S, Hens Z, Knopp D, Niessner R, Potapkin D V and Goryacheva I Y 2014 Biosens. Bioelectron. 53 225
[15] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259
[16] Meinardi F, McDaniel H, Carulli F, Colombo A, Velizhanin K A, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
[17] Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2013 Nat. Photonics. 7 13
[18] Yan J F and Saunders B R 2014 RSC Adv. 4 43286
[19] Zhu G, Pan L K, Xu T and Sun Z 2011 ACS Appl. Mater. Inter. 3 3146
[20] Song X H, Wang M Q, Shi Y H, Deng J P, Yang Z and Yao X 2012 Electrochim. Acta 81 260
[21] Hossain M A, Jennings J R, Shen C, Pan J H, Koh Z Y, Mathews N and Wang Q 2012 J. Mater. Chem. 22 16235
[22] Lee H J, Wang M K, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M and Nazeeruddin M K 2009 Nano. Lett. 9 4221
[23] Lee Y L, Huang B M and Chien H T 2008 Chem. Mater. 20 6903
[24] Tian J J, Gao R, Zhang Q F, Li Y W, Lan J, Qu X H and Cao G Z 2012 J. Phys. Chem. C 116 18655
[25] Lin S C, Lee Y L, Chang C H, Shen Y J and Yang Y M 2007 Appl. Phys. Lett. 90 143517
[26] Li G S, Zhang D Q and Yu J C 2009 Environ. Sci. Technol. 43 7079
[27] Huang S Q, Zhang Q X, Huang X M, Guo X Z, Deng M H, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2010 Nano Technol. 21 375201
[28] Li K Y and Xue Z J 2014 Mater. Chem. Phys. 148 253
[29] Ren L, Li K Y, Cui J Y and Shen T D 2018 J. Mater Sci: Mater. Electron. 29 4478
[30] Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y and Wang L Q 2015 Nanoscale 7 7906
[31] Cui J Y, Li K Y, Ren L, Zhao J and Shen T D 2016 J. Appl. Phys. 120 184302
[32] Zhang Y, Xie T F, Jiang T F, Wei X, Pang S, Wang X and Wang D J 2009 Nanotechnology 20 155707
[33] Pernik D R, Turdy K, Radich J G and Kamat P V 2011 J. Phys. Chem. C. 115 13511
[34] Mocatta D, Cohen G, Schattner J, Millo O, Rabani E and Banin U 2011 Science 332 77
[35] Antonelli D M and Ying J Y 1995 Angew. Chem. Int. Ed. Engl. 34 2014
[36] Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M and Fu H G 2004 J. Solid. State. Chem. 177 3375
[37] Legrand-Buscema C and Bach C M S 2002 Thin Solid Films 418 79
[38] Guijarro N, Shen Q, Gimenez S, Mora-Sero I, Bisquert J, Lana-Villarreal T, Toyoda T and Gomez R 2010 J. Phys. Chem. C. 114 22352
[39] Wei X, Xie T F, Xu D, Zhao Q D, Pang S and Wang D J 2008 Nanotechnology 19 275707
[40] Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y and Yanagida S 2004 J. Phys. Chem. B 108 1628
[41] Kronik L and Shapira Y 1999 Surf. Sci. Rep. 37 1
[42] Ren P G, Yan D X, Ji X, Chen T and Li Z M 2011 Nanotechnology 22 055705
[43] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S B T and Ruoff R S 2007 Carbon 45 1558
[44] Park S J, An J H, Piner R D, Jung I, Yang D X, Velamakanni A, Nguyen S B T and Ruoff R S 2008 Chem. Mater. 20 6592
[45] Swart H C, Greeff A P, Holloway P H and Berning G L P 1999 App. Surf. Sci. 140 63
[46] Shenasa M, Sainkar S and Lichtman D 1986 J. Elecron. Spectrosc. 40 329
[47] Mandale A B, Badrinarayanan S, Date S K and Sinha A P B 1984 J. Elecron. Spectrosc. 33 61
[48] Myeongcheol K and Osten H J 1997 Appl. Phys. Lett. 70 2702
[49] Ludeke R, Ley L and Ploog K 1978 Solid State Commun. 28 57
[50] Li K Y, Ren L and Shen T D 2018 Chin. Phys. B 27 067305
[51] Li K Y, Wei S L and Yang W Y 2011 J. Phys. Chem. Solids 72 643
[52] Balaji S, Djaoued Y and Robichaud J 2006 J. Raman Spectrosc. 37 1416
[53] Ma W, Lu Z and Zhang M 1998 Appl. Phys. A 66 621
[54] Ohsaka T 1980 J. Phys. Soc. Jap. 48 1661
[55] Jiang Y, Meng X M, Yiu W C, Liu J, Ding J X, Lee C S and Lee S T 2004 J. Phys. Chem. B 108 2784
[56] Shao Y, Cao C S, Chen S L, He M, Fang J L, Chen J, Li X F and Li D Z 2015 Appl. Catal. B-Environ. 179 344
[57] Xu X Q, Giménez S, Seró I M, Abate A, Bisquert J and Xu G 2010 Mater. Chem. Phys. 124 709
[58] Winter J O, Gomez N, Gatzert S, Schmidt C E and Korgel B A 2005 Colloids Surf. A: Physicochem. Eng. Aspects. 254 147
[59] Mahrov B, Boschloo G, Hagfeldt A, Dloczik L and Dittrich Th 2004 Appl. Phys. Lett. 84 5455
[60] Duzhko V, Koch F and Dittrich Th 2002 J. Appl. Phys. 91 9432
[61] Lifshitz E, Kaplan A, Ehrenfreund E and Meissner D 1998 J. Phys. Chem. B 102 967
[1] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[2] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[3] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[4] Electronic states and molecular orientation of ITIC film
Ying-Ying Du(杜莹莹), De-Qu Lin(林德渠), Guang-Hua Chen(陈光华), Xin-Yuan Bai(白新源), Long-Xi Wang(汪隆喜), Rui Wu(吴蕊), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Hong-Nian Li(李宏年). Chin. Phys. B, 2018, 27(8): 088801.
[5] Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure
Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财). Chin. Phys. B, 2018, 27(4): 047301.
[6] Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇). Chin. Phys. B, 2018, 27(11): 113101.
[7] Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC
Feng Liang(梁锋), Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Zhi-Juan Zhao(赵志娟), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Jing Yang(杨静), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Xiang Li(李翔), Shuang-Tao Liu(刘双韬), Hui Yang(杨辉), Li-Qun Zhang(张立群), Jian-Ping Liu(刘建平), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同). Chin. Phys. B, 2016, 25(5): 057703.
[8] Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method
Ying-Zi Peng(彭英姿), Yang Song(宋扬), Xiao-Qiang Xie(解晓强), Yuan Li(李源), Zheng-Hong Qian(钱正洪), Ru Bai(白茹). Chin. Phys. B, 2016, 25(5): 058104.
[9] A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing
Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠). Chin. Phys. B, 2016, 25(5): 058301.
[10] Photoelectric characteristics of silicon P-N junction with nanopillar texture:Analysis of X-ray photoelectron spectroscopy
Liu Jing (刘静), Wang Jia-Ou (王嘉鸥), Yi Fu-Ting (伊福廷), Wu Rui (吴蕊), Zhang Nian (张念), Ibrahim Kurash (奎热西). Chin. Phys. B, 2014, 23(9): 096101.
[11] Mechanical properties of Al/a-C nanocomposite thin films synthesized using a plasma focus device
Z. A. Umar, R. S. Rawat, R. Ahmad, A. K. Kumar, Y. Wang, T. Hussain, Z. Chen, L. Shen, Z. Zhang. Chin. Phys. B, 2014, 23(2): 025204.
[12] Energy band alignment at ferroelectric/electrode interface determined by photoelectron spectroscopy
Chen Feng (陈峰), Wu Wen-Bin (吴文彬), Li Shun-Yi (李舜怡), Andreas Klein. Chin. Phys. B, 2014, 23(1): 017702.
[13] Influence of wet chemical cleaning on quantum efficiency of GaN photocathode
Wang Xiao-Hui (王晓晖), Gao Pin (高频), Wang Hong-Gang (王洪刚), Li Biao (李飙), Chang Ben-Kang (常本康). Chin. Phys. B, 2013, 22(2): 027901.
[14] A shortcut for determining growth mode
R. A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2013, 22(10): 107202.
[15] Influence of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition
Fan Ji-Bin (樊继斌), Liu Hong-Xia (刘红侠), Gao Bo (高博), Ma Fei (马飞), Zhuo Qing-Qing (卓青青), Hao Yue (郝跃). Chin. Phys. B, 2012, 21(8): 087702.
No Suggested Reading articles found!