Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074201    DOI: 10.1088/1674-1056/23/7/074201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Solar-blind ultraviolet band-pass filter based on metal-dielectric multilayer structures

Wang Tian-Jiao (王天娇), Xu Wei-Zong (徐尉宗), Lu Hai (陆海), Ren Fang-Fang (任芳芳), Chen Dun-Jun (陈敦军), Zhang Rong (张荣), Zheng You-Dou (郑有炓)
Key Laboratory of Advanced Photonic and Electronic Materials of Jiangsu Province, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period.
Keywords:  solar-blind band-pass filter      metal-dielectric multilayer  
Received:  28 October 2013      Revised:  29 November 2013      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327504, 2011CB922100, and 2011CB301900), the National Natural Science Foundation of China (Grant Nos. 60936004 and 11104130), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2011556 and BK2011050), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Lu Hai     E-mail:  hailu@nju.edu.cn
About author:  42.25.Bs; 78.20.-e; 78.20.Bh; 85.60.Gz

Cite this article: 

Wang Tian-Jiao (王天娇), Xu Wei-Zong (徐尉宗), Lu Hai (陆海), Ren Fang-Fang (任芳芳), Chen Dun-Jun (陈敦军), Zhang Rong (张荣), Zheng You-Dou (郑有炓) Solar-blind ultraviolet band-pass filter based on metal-dielectric multilayer structures 2014 Chin. Phys. B 23 074201

[1] Razeghi M and Rogalsky A 1996 J. Appl. Phys. 79 7433
[2] Popovic R S 1993 The 2nd Serbian Conference on Microelectronics and Optoelectronics, October 26-28, 1993 Nis, Yugoslavia, p. 239
[3] Chen X P, Zhu L H, Cai J and Wu Z Y 2007 J. Appl. Phys. 102 2
[4] Muñoz E, Monroy E, Pau J L, Calle F, Omnès F and Gibart P 2001 Phys.: Condens. Matter 13 7115
[5] Lian H F, Wang G S, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 017302
[6] Djurić Z G, Danković T, Jakšić Z S, Randjelović D, Petrović R, Ehrfeld W, Schmidt A and Hecker K 1999 Proc. SPIE: Design, Test and Microfabrication of MEMS and MOEMS, March 10, 1999 Paris, France, p. 3680
[7] Celanovic I, O'Sullivan F, Ilak M, Kassakian J and Perreault D 2004 Opt. Lett. 29 863
[8] Scalora M, Bloemer M J, Manka A S, Pethel S D, Dowling J P and Bowden C M 1998 J. Appl. Phys. 83 2377
[9] Bloemer M J and Scalora M 1998 Appl. Phys. Lett. 72 1676
[10] Jakšić Z, Maksimović M and Sarajlić M 2005 J. Opt. A: Pure Appl. Opt. 7 51
[11] Mu J W, Lin P T, Zhang L, Michel J, Kimerling L C, Jaworski F and Agarwal A 2013 Appl. Phys. Lett. 102 213105
[12] Katsdis C C and Siapkas 2002 Appl. Opt. 41 3978
[13] Li Z X, Pei L, Chen H, Peng W J, Ning T G, Zhao R F and Gao S 2010 Acta Phys. Sin. 54 2226 (in Chinese)
[14] Xu T, Cao Z Q and Fang J H 2010 Chin. Phys. B 19 040307
[15] Rakić A D 1995 Appl. Opt. 34 4755
[16] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic)
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[12] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[15] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
No Suggested Reading articles found!