INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity |
Jinhui Gao(高金辉)†, Yehao Li(李叶豪)†, Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪)‡, and Xia Guo(郭霞)\ccclink |
School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract A graphene/AlGaN deep-ultraviolet (UV) photodetector is presented with ultrahigh responsivity of 3.4×105 A/W at 261 nm incident wavelength and 149 pW light power. A gain mechanism based on electron trapping at the potential well is proposed to be responsible for the high responsivity. To optimize the trade-off between responsivity and response speed, a back-gate electrode is designed at the AlGaN/GaN two-dimensional electron gas (2DEG) area which eliminates the persistent photocurrent effect and shortens the recovery time from several hours to milliseconds. The 2DEG gate is proposed as an alternative way to apply the back gate electrode on AlGaN based devices on insulating substrates. This work sheds light on a possible way for weak deep-UV light detection.
|
Received: 08 July 2020
Revised: 10 August 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
Fund: Project supported by the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications (Grant No. 202002046) and the National Natural Science Foundation of China (Grant No. 61804012). |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: anqihu@bupt.edu.cn §Corresponding author. E-mail: guox@bupt.edu.cn
|
Cite this article:
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity 2020 Chin. Phys. B 29 128502
|
[1] Sang L, Liao M and Sumiya M Sensors 13 10482 DOI: 10.3390/s1308104822013 [2] Cicek E, McClintock R, Cho C Y, Rahnema B and Razeghi M Appl. Phys. Lett. 103 191108 DOI: 10.1063/1.48290652013 [3] Kumar M, Lee C Y, Sekiguchi H, Okada H and Wakahara A Semicond. Sci. Technol. 28 094005 DOI: 10.1088/0268-1242/28/9/0940052013 [4] Hearne S J, Han J, Lee S R, Floro J A, Follstaedt D M, Chason E and Tsong I S T Appl. Phys. Lett. 76 1534 DOI: 10.1063/1.1260872000 [5] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechwa M, de Garcia A F P, Gatti F and Koppens F H L Nat. Nanotechnol. 7 363 DOI: 10.1038/nnano.2012.602012 [6] Chen Z, Cheng Z, Wang J, Wan X, Shu C, Tsang H K, Ho H P and Xu J Adv. Opt. Mater. 3 1207 DOI: 10.1002/adom.2015001272015 [7] Hu A, Tian H, Liu Q, Wang L, Wang L, He X, Luo Y and Guo X Adv. Opt. Mater. 7 1801792 DOI: 10.1002/adom.2018017922019 [8] Liu Q, Tian H, Li J, Hu A, He X, Sui M, Guo X Adv. Opt. Mater. 7 1900455 DOI: 10.1002/adom.2019004552019 [9] Tian H J, Liu Q L, Zhou C X, Zhan X J, He X Y, Hu A Q and Guo X Appl. Phys. Lett. 113 121109 DOI: 10.1063/1.50345272018 [10] Lin F, Chen S, Meng J, Tse G, Fu X, Shen B, Liao Z and Yu D Appl. Phys. Lett. 105 073103 DOI: 10.1063/1.48936092014 [11] Nikitskiy I, Goossens S, Kufer D, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G Nat. Commun. 7 11954 DOI: 10.1038/ncomms119542016 [12] Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X and Yang D ACS Nano 11 9854 DOI: 10.1021/acsnano.7b035692017 [13] Bessonov A A, Allen M, Liu Y, Malik S, Bottomley J, Rushton A, Medina-Salazar I and Ryhänen T ACS Nano 11 5547 DOI: 10.1021/acsnano.7b007602017 [14] Knigge A, Brendel M, Brunner F, Einfeldt S, Knauer A, K V, Zeimer U and Weyers M Jpn. J. Appl. Phys. 52 (8S) 08JF03 DOI: 10.7567/JJAP.52.08JF032013 [15] Li D, Sun X, Song H, Li Z, Chen Y, Jiang H and Miao G Adv. Mater. 24 845 DOI: 10.1002/adma.2011025852012 [16] Shen L, Pun E Y B and Ho J C Mater. Chem. Front 1 630 DOI: 10.1039/C6QM00279J2017 [17] Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X and Li S Nanoscale 6 12009 DOI: 10.1039/C4NR03581J2014 [18] Zhang X, Liu B, Liu Q, Yang W, Xiong C, Li J and Jiang X ACS Appl. Mater. Interfaces 9 2669 DOI: 10.1021/acsami.6b149072017 [19] Lu Y, Wu Z, Xu W and Lin S Nanotechnology 27 48LT03 DOI: 10.1088/0957-4484/27/48/48LT032016 [20] Yoshikawa A, Yamamoto Y, Murase T, Iwaya M, Takeuchi T, Kamiyama S and Akasaki I Jpn. J. Appl. Phys. 55 (5S) 05FJ04 DOI: 10.7567/JJAP.55.05FJ042016 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|