Special Issue:
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Photodetector: Materials, physics, and applications |
Prev
Next
|
|
|
Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies |
Yan-Fang Zhang(张彦芳)1,2, Xuan-Hu Chen(陈选虎)1, Yang Xu(徐阳)1, Fang-Fang Ren(任芳芳)1,3, Shu-Lin Gu(顾书林)1,3, Rong Zhang(张荣)1,3, You-Dou Zheng(郑有炓)1,3, Jian-Dong Ye(叶建东)1,3 |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Wuxi Institute of Technology, Wuxi 214121, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We report on the transition of photovoltaic and photoconductive operation modes of the amorphous Ga2O3-based solar-blind photodetectors in metal-semiconductor-metal (MSM) configurations. The conversion from Ohmic to Schottky contacts at Ti/Ga2O3 interface is realized by tuning the conductivity of amorphous Ga2O3 films with delicate control of oxygen flux in the sputtering process. The abundant donor-like oxygen vacancies distributed near the Ti/Ga2O3 interface fascinate the tunneling process across the barrier and result in the formation of Ohmic contacts. As a consequence, the serious sub-gap absorption and persistent photoconductivity (PPC) effect degrades the performance of the photoconductive detectors. In contrast, the photovoltaic device with a Schottky contact exhibits an ultra-low dark current less than 1 pA, a high detectivity of 9.82×1012 cm·Hz1/2·W-1, a fast response time of 243.9 μs, and a high ultraviolet C (UVC)-to-ultraviolet A (UVA) rejection ratio of 103. The promoting performance is attributed primarily to the reduction of the sub-gap states and the resultant suppression of PPC effect. With simple architecture, low fabrication cost, and easy fusion with modern high-speed integrated circuitry, these results provide a cost-effective way to realize high performance solar-blind photodetectors towards versatile practical applications.
|
Received: 28 October 2018
Revised: 10 December 2018
Accepted manuscript online:
|
PACS:
|
85.60.-q
|
(Optoelectronic devices)
|
|
68.55.ag
|
(Semiconductors)
|
|
73.40.Mr
|
(Semiconductor-electrolyte contacts)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
Fund: Project supported by the National Key Research and Development Project, China (Grant No. 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61322403, and 91850112), the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115), Shenzhen Fundamental Research Project, China (Grant Nos. 201773239 and 201888588), the Project of the State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, China (Grant No. 2017KF001), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 021014380093 and 021014380085). |
Corresponding Authors:
Jian-Dong Ye
E-mail: yejd@nju.edu.cn
|
Cite this article:
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东) Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies 2019 Chin. Phys. B 28 028501
|
[1] |
Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
|
[2] |
Pearton S J, Yang J, Cary I V P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
|
[3] |
Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Dev. Lett. 35 372
|
[4] |
Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 011117
|
[5] |
Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
|
[6] |
Cui S J, Mei Z X, Zhang Y H, Liang H L and Du X L 2017 Adv. Opt. Mater. 5 1700454
|
[7] |
Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
|
[8] |
Wu Z P, Bai G X, Qu Y Y, Guo D Y, Li L H, Li P G, Hao J H and Tang W H 2016 Appl. Phys. Lett. 108 211903
|
[9] |
López I, Castaldini A, Cavallini A, Nogales E, Méndez B and Piqueras J 2014 J. Phys. D: Appl. Phys. 47 415101
|
[10] |
Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
|
[11] |
Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L and Li Y R 2016 Opt. Mater. 51 203
|
[12] |
Deak P, Ho Q D, Seemann F, Aradi B, Lorke M and Frauenheim T 2017 Phys. Rev. B 95 075208
|
[13] |
Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 022107
|
[14] |
Xian F L, Ye J D, Gu S L, Tan H H and Jagadish C 2016 Appl. Phys. Lett. 109 023109
|
[15] |
Nomura K, Kamiya T, Yanagi H, Ikenaga E, Yang K, Kobayashi K, Hirano M and Hosono H 2008 Appl. Phys. Lett. 92 202117
|
[16] |
Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
|
[17] |
Omura Y, Mori Y, Sato S and Mallik A 2018 J. Appl. Phys. 123 161549
|
[18] |
Chiu F C 2014 Adv. Mater. Sci. Eng. 7 1
|
[19] |
Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R, Zheng Y D and Ye J D 2017 ACS Appl. Mater. Interfaces 9 36997
|
[20] |
Jacopin G, De Luna Bugallo A, Rigutti L, Lavenus P, Julien F H, Lin Y, Tu L and Tchernycheva M 2014 Appl. Phys. Lett. 104 023116
|
[21] |
Kong W Y, Wu G A, Wang K Y, Zhang T F, ZouY F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
|
[22] |
Mock A, Korlacki R, Briley C, Darakchieva V, Monemar B, Kumagai Y, Goto K, Higashiwaki M and Schubert M 2017 Phys. Rev. B 96 245205
|
[23] |
Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D and Lischka K 2000 Appl. Phys. Lett. 76 2832
|
[24] |
Pophristic M, Long F H, Tran C, Ferguson I T and Karlicek R F 1998 Appl. Phys. Lett. 73 3550
|
[25] |
Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A and Bimberg D 2004 Appl. Phys. Lett. 85 1946
|
[26] |
Cazzanelli M and Pavesi L 1997 Phys. Rev. B 56 15264
|
[27] |
An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111
|
[28] |
Zhang D K, Sheng Y, Wang J Y, Gao F, Yan S C, Wang J Z, Pan L J, Wan Q and Shi Y 2017 Opt. Commun. 15 72
|
[29] |
Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S and Zhao D X 2015 Nano Lett. 15 3988
|
[30] |
Nathan A, Lee S, Jeon S and Robertson J 2014 J. Disp. Technol. 10 917
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|