Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067301    DOI: 10.1088/1674-1056/27/6/067301

Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors

Shu-Juan Cui(崔书娟)1,2, Zeng-Xia Mei(梅增霞)1, Yao-Nan Hou(侯尧楠)1, Quan-Sheng Chen(陈全胜)1,2, Hui-Li Liang(梁会力)1, Yong-Hui Zhang(张永晖)1,2, Wen-Xing Huo(霍文星)1,2, Xiao-Long Du(杜小龙)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

In the present work, we explore the solar-blind ultraviolet (UV) photodetectors (PDs) with enhanced photoresponse, fabricated on Ga/Ga2O3 nanocomposite films. Through pre-burying metal Ga layers and thermally post-annealing the laminated Ga2O3/Ga/Ga2O3 structures, Ga/Ga2O3 nanocomposite films incorporated with Ga nanospheres are obtained. For the prototype PD, it is found that the photocurrent and photoresponsivity will first increase and then decrease monotonically with the thickness of the pre-buried Ga layer increasing. Each of all PDs shows a spectrum response peak at 260 nm, demonstrating the ability to detect solar-blind UV light. Adjustable photoresponse enhancement factors are achieved by means of the surface plasmon in the nanocomposite films. The PD with a 20 nm thick Ga interlayer exhibits the best solar-blind UV photoresponse characteristics with an extremely low dark current of 8.52 pA at 10-V bias, a very high light-to-dark ratio of~8×105, a large photoresponsivity of 2.85 A/W at 15-V bias, and a maximum enhancement factor of~220. Our research provides a simple and practical route to high performance solar-blind UV PDs and potential applications in the field of optoelectronics.

Keywords:  Ga/Ga2O3      nanocomposite      surface plasmon      solar-blind photodetector  
Received:  09 February 2018      Revised:  06 March 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  71.20.Nr (Semiconductor compounds)  
  73.40.Sx (Metal-semiconductor-metal structures)  

Project supported by the National Natural Science Foundation of China (Grant Nos.11674405 and 11675280) and the Fund from the Laboratory of Microfabrication in Institute of Physics,Chinese Academy of Sciences.

Corresponding Authors:  Zeng-Xia Mei, Xiao-Long Du     E-mail:;

Cite this article: 

Shu-Juan Cui(崔书娟), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Quan-Sheng Chen(陈全胜), Hui-Li Liang(梁会力), Yong-Hui Zhang(张永晖), Wen-Xing Huo(霍文星), Xiao-Long Du(杜小龙) Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors 2018 Chin. Phys. B 27 067301

[1] Li L, Lee P S, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y and Golberg D 2010 Adv. Mater. 22 5145
[2] Hou Y N, Mei Z X, Liu Z L, Zhang T C and Du X L 2011 Appl. Phys. Lett. 98 103506
[3] Liao M, Wang X, Teraji T, Koizumi S and Koide Y 2010 Phys. Rev. B 81 033304
[4] Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
[5] Tut T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 103502
[6] McClintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
[7] Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q and Kuznetsov A Y 2009 Adv. Mater. 21 4625
[8] Hou Y N, Mei Z X, Liang H L, Ye D Q, Liang S, Gu C Z and Du X L 2011 Appl. Phys. Lett. 98 263501
[9] Liang H L, Mei Z X, Zhang Q H, Gu L, Liang S, Hou Y N, Ye D Q, Gu C Z, Yu R C and Du X L 2011 Appl. Phys. Lett. 98 221902
[10] Chen X, Xu Y, Zhou D, Yang S, Ren F, Lu H, Tang K, Gu S, Zhang R, Zheng Y and Ye J 2017 ACS Appl. Mater. Interfaces 9 36997
[11] Suzuki R, Nakagomi S and Kokubun Y 2011 Appl. Phys. Lett. 98 131114
[12] Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
[13] Cui S J, Mei Z X, Zhang Y H, Liang H L and Du X L 2017 Adv. Opt. Mater. 5 1700454
[14] Singh Pratiyush A, Krishnamoorthy S, Vishnu Solanke S, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107
[15] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
[16] Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I and Delaunay J J 2010 Adv. Funct. Mater. 20 3972
[17] Zou R, Zhang Z, Liu Q, Hu J, Sang L, Liao M and Zhang W 2014 Small 10 1848
[18] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
[19] Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
[20] Du X, Li Z, Luan C, Wang W, Wang M, Feng X, Xiao H and Ma J 2015 J. Mater. Sci. 50 3252
[21] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[22] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[23] Li D B, Sun X J, Jia Y P, Stockman M I, Paudel H P, Song H, Jiang H and Li Z M 2017 Light Sci. Appl. 6 e17038
[24] Clavero C 2014 Nat. Photonics 8 95
[25] Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D and Lin S Y 2010 Nano Lett. 10 1704
[26] Tian C, Jiang D, Li B, Lin J, Zhao Y, Yuan W, Zhao J, Liang Q, Gao S, Hou J and Qin J 2014 ACS Appl. Mater. Interfaces 6 2162
[27] Li D, Sun X, Song H, Li Z, Chen Y, Jiang H and Miao G 2012 Adv. Mater. 24 845
[28] Zhang W, Xu J, Ye W, Li Y, Qi Z, Dai J, Wu Z, Chen C, Yin J, Li J, Jiang H and Fang Y 2015 Appl. Phys. Lett. 106 021112
[29] Gao H, Liu C, Jeong H E and Yang P 2012 ACS Nano 6 234
[30] Sharma B, Cardinal M F, Ross M B, Zrimsek A B, Bykov S V, Punihaole D, Asher S A, Schatz G C and Van Duyne R P 2016 Nano Lett. 16 7968
[31] Losurdo M, Yi C, Suvorova A, Rubanov S, Kim T H, Giangregorio M M, Jiao W, Bergmair I, Bruno G and Brown A S 2014 ACS Nano 8 3031
[32] Catalán-Gómez S, Redondo-Cubero A, Palomares F J, Nucciarelli F and Pau J L 2017 Nanotechnology 28 405705
[33] Yang Y, Callahan J M, Kim T H, Brown A S and Everitt H O 2013 Nano Lett. 13 2837
[34] Cui S J, Mei Z X, Hou Y N, Sun M H, Chen Q S, Liang H L, Zhang Y H, Bai X D and Du X L 2018 Sci. China-Phys. Mech. Astron. 61 107021
[35] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
[36] Zhong M, Wei Z, Meng X, Wu F and Li J 2015 J. Alloys Compd. 619 572
[37] Yu F P, Ou S L and Wuu D S 2015 Opt. Mater. Express 5 1240
[38] Weng W Y, Hsueh T J, Chang S J, Huang G J and Hsueh H T 2011 IEEE Sens. J. 11 999
[39] Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R and Tang Z 2015 Adv. Opt. Mater. 3 248
[40] Langhammer C, Schwind M, Kasemo B and Zorić I 2008 Nano Lett. 8 1461
[41] Bao G, Li D, Sun X, Jiang M, Li Z, Song H, Jiang H, Chen Y, Miao G and Zhang Z 2014 Opt. Express 22 24286
[42] Fang J, Yi Y, Ding B and Song X 2008 Appl. Phys. Lett. 92 131115
[43] Tira C, Tira D, Simon T and Astilean S 2014 J. Mol. Struct. 1072 137
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[6] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[11] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[12] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!